2,174 research outputs found

    Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images

    Full text link
    Convolutional neural networks (CNNs) show impressive performance for image classification and detection, extending heavily to the medical image domain. Nevertheless, medical experts are sceptical in these predictions as the nonlinear multilayer structure resulting in a classification outcome is not directly graspable. Recently, approaches have been shown which help the user to understand the discriminative regions within an image which are decisive for the CNN to conclude to a certain class. Although these approaches could help to build trust in the CNNs predictions, they are only slightly shown to work with medical image data which often poses a challenge as the decision for a class relies on different lesion areas scattered around the entire image. Using the DiaretDB1 dataset, we show that on retina images different lesion areas fundamental for diabetic retinopathy are detected on an image level with high accuracy, comparable or exceeding supervised methods. On lesion level, we achieve few false positives with high sensitivity, though, the network is solely trained on image-level labels which do not include information about existing lesions. Classifying between diseased and healthy images, we achieve an AUC of 0.954 on the DiaretDB1.Comment: Accepted in Proc. IEEE International Conference on Image Processing (ICIP), 201

    Detection-aided liver lesion segmentation using deep learning

    Get PDF
    A fully automatic technique for segmenting the liver and localizing its unhealthy tissues is a convenient tool in order to diagnose hepatic diseases and assess the response to the according treatments. In this work we propose a method to segment the liver and its lesions from Computed Tomography (CT) scans using Convolutional Neural Networks (CNNs), that have proven good results in a variety of computer vision tasks, including medical imaging. The network that segments the lesions consists of a cascaded architecture, which first focuses on the region of the liver in order to segment the lesions on it. Moreover, we train a detector to localize the lesions, and mask the results of the segmentation network with the positive detections. The segmentation architecture is based on DRIU, a Fully Convolutional Network (FCN) with side outputs that work on feature maps of different resolutions, to finally benefit from the multi-scale information learned by different stages of the network. The main contribution of this work is the use of a detector to localize the lesions, which we show to be beneficial to remove false positives triggered by the segmentation network. Source code and models are available at https://imatge-upc.github.io/liverseg-2017-nipsws/ .Comment: NIPS 2017 Workshop on Machine Learning for Health (ML4H

    Automated Retinal Lesion Detection via Image Saliency Analysis

    Get PDF
    Background and objective:The detection of abnormalities such as lesions or leakage from retinal images is an important health informatics task for automated early diagnosis of diabetic and malarial retinopathy or other eye diseases, in order to prevent blindness and common systematic conditions. In this work, we propose a novel retinal lesion detection method by adapting the concepts of saliency. Methods :Retinal images are firstly segmented as superpixels, two new saliency feature representations: uniqueness and compactness, are then derived to represent the superpixels. The pixel level saliency is then estimated from these superpixel saliency values via a bilateral filter. These extracted saliency features form a matrix for low-rank analysis to achieve saliency detection. The precise contour of a lesion is finally extracted from the generated saliency map after removing confounding structures such as blood vessels, the optic disc, and the fovea. The main novelty of this method is that it is an effective tool for detecting different abnormalities at pixel-level from different modalities of retinal images, without the need to tune parameters. Results:To evaluate its effectiveness, we have applied our method to seven public datasets of diabetic and malarial retinopathy with four different types of lesions: exudate, hemorrhage, microaneurysms, and leakage. The evaluation was undertaken at pixel-level, lesion-level, or image-level according to ground truth availability in these datasets. Conclusions:The experimental results show that the proposed method outperforms existing state-of-the-art ones in applicability, effectiveness, and accuracy

    Efficient Pyramid Channel Attention Network for Pathological Myopia Detection

    Full text link
    Pathological myopia (PM) is the leading ocular disease for impaired vision and blindness worldwide. The key to detecting PM as early as possible is to detect informative features in global and local lesion regions, such as fundus tessellation, atrophy and maculopathy. However, applying classical convolutional neural networks (CNNs) to efficiently highlight global and local lesion context information in feature maps is quite challenging. To tackle this issue, we aim to fully leverage the potential of global and local lesion information with attention module design. Based on this, we propose an efficient pyramid channel attention (EPCA) module, which dynamically explores the relative importance of global and local lesion context information in feature maps. Then we combine the EPCA module with the backbone network to construct EPCA-Net for automatic PM detection based on fundus images. In addition, we construct a PM dataset termed PM-fundus by collecting fundus images of PM from publicly available datasets (e.g., the PALM dataset and ODIR dataset). The comprehensive experiments are conducted on three datasets, demonstrating that our EPCA-Net outperforms state-of-the-art methods in detecting PM. Furthermore, motivated by the recent pretraining-and-finetuning paradigm, we attempt to adapt pre-trained natural image models for PM detection by freezing them and treating the EPCA module and other attention modules as the adapters. The results show that our method with the pretraining-and-finetuning paradigm achieves competitive performance through comparisons to part of methods with traditional fine-tuning methods with fewer tunable parameters.Comment: 12 page
    corecore