14,802 research outputs found

    Towards Intelligent Databases

    Get PDF
    This article is a presentation of the objectives and techniques of deductive databases. The deductive approach to databases aims at extending with intensional definitions other database paradigms that describe applications extensionaUy. We first show how constructive specifications can be expressed with deduction rules, and how normative conditions can be defined using integrity constraints. We outline the principles of bottom-up and top-down query answering procedures and present the techniques used for integrity checking. We then argue that it is often desirable to manage with a database system not only database applications, but also specifications of system components. We present such meta-level specifications and discuss their advantages over conventional approaches

    Aligning Mathematics Curriculum to Create Potential for Active Learning in Pre-K Through Eighth Grade Teacher Education

    Get PDF
    In this paper, we consider some issues surrounding the teaching of mathematics to pre-service teachers. In particular. we look at the possibilities for teaching elementary mathematics from an advanced standpoint and alignments of curriculum that have the capacity to enhance student involvement in the making of the mathematics.The particulars of the James Madison University curriculum are used to illustrate many of the points

    Are There Good Mistakes? A Theoretical Analysis of CEGIS

    Full text link
    Counterexample-guided inductive synthesis CEGIS is used to synthesize programs from a candidate space of programs. The technique is guaranteed to terminate and synthesize the correct program if the space of candidate programs is finite. But the technique may or may not terminate with the correct program if the candidate space of programs is infinite. In this paper, we perform a theoretical analysis of counterexample-guided inductive synthesis technique. We investigate whether the set of candidate spaces for which the correct program can be synthesized using CEGIS depends on the counterexamples used in inductive synthesis, that is, whether there are good mistakes which would increase the synthesis power. We investigate whether the use of minimal counterexamples instead of arbitrary counterexamples expands the set of candidate spaces of programs for which inductive synthesis can successfully synthesize a correct program. We consider two kinds of counterexamples: minimal counterexamples and history bounded counterexamples. The history bounded counterexample used in any iteration of CEGIS is bounded by the examples used in previous iterations of inductive synthesis. We examine the relative change in power of inductive synthesis in both cases. We show that the synthesis technique using minimal counterexamples MinCEGIS has the same synthesis power as CEGIS but the synthesis technique using history bounded counterexamples HCEGIS has different power than that of CEGIS, but none dominates the other.Comment: In Proceedings SYNT 2014, arXiv:1407.493

    Plan generation using a method of deductive program synthesis

    Get PDF
    In this paper we introduce a planning approach based on a method of deductive program synthesis. The program synthesis system we rely upon takes first-order specifications and from these derives recursive programs automatically. It uses a set of transformation rules whose applications are guided by an overall strategy. Additionally several heuristics are involved which considerably reduce the search space. We show by means of an example taken from the blocks world how even recursive plans can be obtained with this method. Some modifications of the synthesis strategy and heuristics are discussed, which are necessary to obtain a powerful and automatic planning system. Finally it is shown how subplans can be introduced and generated separately

    Service Learning Enhances Conceptual Learning in a RN to BSN Program

    Get PDF
    A qualitative study using transcript analysis was conducted to examine the effectiveness of service learning in enhancing conceptual learning in RN to BSN students. As part of their capstone course in an online program, students engaged in 64 hours of service learning in their local community. The transcripts of asynchronous discussions and journal entries formed the data for analysis. The findings illustrated that the student’s conceptual understanding was enhanced from the service learning experience. Further, the students demonstrated higher-level thinking by linking concepts that could be applied to nursing practice. Service learning reinforced the community-based philosophy of the School of Nursing, and strengthened their abilities in leadership, teamwork, and collaboration with a greater orientation to community, vulnerable populations, and health promotion. Service learning was found to be an effective way to use the skills of the registered nurse for health related service in the community while also meeting their academic and individual learning needs

    On Neuromechanical Approaches for the Study of Biological Grasp and Manipulation

    Full text link
    Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas
    corecore