2,445 research outputs found

    Causality, Information and Biological Computation: An algorithmic software approach to life, disease and the immune system

    Full text link
    Biology has taken strong steps towards becoming a computer science aiming at reprogramming nature after the realisation that nature herself has reprogrammed organisms by harnessing the power of natural selection and the digital prescriptive nature of replicating DNA. Here we further unpack ideas related to computability, algorithmic information theory and software engineering, in the context of the extent to which biology can be (re)programmed, and with how we may go about doing so in a more systematic way with all the tools and concepts offered by theoretical computer science in a translation exercise from computing to molecular biology and back. These concepts provide a means to a hierarchical organization thereby blurring previously clear-cut lines between concepts like matter and life, or between tumour types that are otherwise taken as different and may not have however a different cause. This does not diminish the properties of life or make its components and functions less interesting. On the contrary, this approach makes for a more encompassing and integrated view of nature, one that subsumes observer and observed within the same system, and can generate new perspectives and tools with which to view complex diseases like cancer, approaching them afresh from a software-engineering viewpoint that casts evolution in the role of programmer, cells as computing machines, DNA and genes as instructions and computer programs, viruses as hacking devices, the immune system as a software debugging tool, and diseases as an information-theoretic battlefield where all these forces deploy. We show how information theory and algorithmic programming may explain fundamental mechanisms of life and death.Comment: 30 pages, 8 figures. Invited chapter contribution to Information and Causality: From Matter to Life. Sara I. Walker, Paul C.W. Davies and George Ellis (eds.), Cambridge University Pres

    Development of Artificial Intelligence systems as a prediction tool in ovarian cancer

    Get PDF
    PhD ThesisOvarian cancer is the 5th most common cancer in females and the UK has one of the highest incident rates in Europe. In the UK only 36% of patients will live for at least 5 years after diagnosis. The number of prognostic markers, treatments and the sequences of treatments in ovarian cancer are rising. Therefore, it is getting more difficult for the human brain to perform clinical decision making. There is a need for an expert computer system (e.g. Artificial Intelligence (AI)), which is capable of investigating the possible outcomes for each marker, treatment and sequence of treatment. Such expert systems may provide a tool which could help clinicians to analyse and predict outcome using different treatment pathways. Whilst prediction of overall survival of a patient is difficult there may be some benefits, as this not only is useful information for the patient but may also determine treatment modality. In this project a dataset was constructed of 352 patients who had been treated at a single centre. Clinical data were extracted from the health records. Expert systems were then investigated to determine the optimum model to predict overall survival of a patient. The five year survival period (a standard survival outcome measure in cancer research) was investigated; in addition, the system was developed with the flexibility to predict patient survival rates for many other categories. Comparisons with currently used prognostic models in ovarian cancer demonstrated a significant improvement in performance for the AI model (Area under the Curve (AUC) of 0.72 for AI and AUC of 0.62 for the statistical model). Using various methods, the most important variables in this prediction were identified as: FIGO stage, outcome of the surgery and CA125. This research investigated the effects of increasing the number of cases in prediction models. Results indicated that by increasing the number of cases, the prediction performance improved. Categorization of continuous data did not improve the prediction performance. The project next investigated the possibility of predicting surgical outcomes in ovarian cancer using AI, based on the variables that are available for clinicians prior to the surgery. Such a tool could have direct clinical relevance. Diverse models that can predict the outcome of the surgery were investigated and developed. The developed AI models were also compared against the standard statistical prediction model, which demonstrated that the AI model outperformed the statistical prediction model: the prediction of all outcomes (complete or optimal or suboptimal) (AUC of AI: 0.71 and AUC of statistical model: 0.51), the prediction of complete or optimal cytoreduction versus suboptimal cytoreduction (AUC of AI: 0.73 and AUC of statistical model: 0.50) and finally the prediction of complete cytoreduction versus optimal or suboptimal cytoreduction (AUC of AI: 0.79 and AUC of statistical model: 0.47). The most important variables for this prediction were identified as: FIGO stage, tumour grade and histology. The application of transcriptomic analysis to cancer research raises the question of which genes are significantly involved in a particular cancer and which genes can accurately predict survival outcomes in a given cancer. Therefore, AI techniques were employed to identify the most important genes for the prediction of Homologous Recombination (HR), an important DNA repair pathway in ovarian cancer, identifying LIG1 and POLD3 as novel prognostic biomarkers. Finally, AI models were used to predict the HR status for any given patient (AUC: 0.87). This project has demonstrated that AI may have an important role in ovarian cancer. AI systems may provide tools to help clinicians and research in ovarian cancer and may allow more informed decisions resulting in better management of this cancer

    The state of the art of medical imaging technology: from creation to archive and back.

    Get PDF
    Medical imaging has learnt itself well into modern medicine and revolutionized medical industry in the last 30 years. Stemming from the discovery of X-ray by Nobel laureate Wilhelm Roentgen, radiology was born, leading to the creation of large quantities of digital images as opposed to film-based medium. While this rich supply of images provides immeasurable information that would otherwise not be possible to obtain, medical images pose great challenges in archiving them safe from corrupted, lost and misuse, retrievable from databases of huge sizes with varying forms of metadata, and reusable when new tools for data mining and new media for data storing become available. This paper provides a summative account on the creation of medical imaging tomography, the development of image archiving systems and the innovation from the existing acquired image data pools. The focus of this paper is on content-based image retrieval (CBIR), in particular, for 3D images, which is exemplified by our developed online e-learning system, MIRAGE, home to a repository of medical images with variety of domains and different dimensions. In terms of novelties, the facilities of CBIR for 3D images coupled with image annotation in a fully automatic fashion have been developed and implemented in the system, resonating with future versatile, flexible and sustainable medical image databases that can reap new innovations

    Laser Based Mid-Infrared Spectroscopic Imaging – Exploring a Novel Method for Application in Cancer Diagnosis

    Get PDF
    A number of biomedical studies have shown that mid-infrared spectroscopic images can provide both morphological and biochemical information that can be used for the diagnosis of cancer. Whilst this technique has shown great potential it has yet to be employed by the medical profession. By replacing the conventional broadband thermal source employed in modern FTIR spectrometers with high-brightness, broadly tuneable laser based sources (QCLs and OPGs) we aim to solve one of the main obstacles to the transfer of this technology to the medical arena; namely poor signal to noise ratios at high spatial resolutions and short image acquisition times. In this thesis we take the first steps towards developing the optimum experimental configuration, the data processing algorithms and the spectroscopic image contrast and enhancement methods needed to utilise these high intensity laser based sources. We show that a QCL system is better suited to providing numerical absorbance values (biochemical information) than an OPG system primarily due to the QCL pulse stability. We also discuss practical protocols for the application of spectroscopic imaging to cancer diagnosis and present our spectroscopic imaging results from our laser based spectroscopic imaging experiments of oesophageal cancer tissue
    • …
    corecore