9,191 research outputs found

    Fundamental limits and improved algorithms for linear least-squares wireless position estimation

    Get PDF
    In this paper, theoretical lower bounds on performance of linear least-squares (LLS) position estimators are obtained, and performance differences between LLS and nonlinear least-squares (NLS) position estimators are quantified. In addition, two techniques are proposed in order to improve the performance of the LLS approach. First, a reference selection algorithm is proposed to optimally select the measurement that is used for linearizing the other measurements in an LLS estimator. Then, a maximum likelihood approach is proposed, which takes correlations between different measurements into account in order to reduce average position estimation errors. Simulations are performed to evaluate the theoretical limits and to compare performance of various LLS estimators. Copyright © 2010 John Wiley & Sons, Ltd

    Space-Time Hierarchical-Graph Based Cooperative Localization in Wireless Sensor Networks

    Full text link
    It has been shown that cooperative localization is capable of improving both the positioning accuracy and coverage in scenarios where the global positioning system (GPS) has a poor performance. However, due to its potentially excessive computational complexity, at the time of writing the application of cooperative localization remains limited in practice. In this paper, we address the efficient cooperative positioning problem in wireless sensor networks. A space-time hierarchical-graph based scheme exhibiting fast convergence is proposed for localizing the agent nodes. In contrast to conventional methods, agent nodes are divided into different layers with the aid of the space-time hierarchical-model and their positions are estimated gradually. In particular, an information propagation rule is conceived upon considering the quality of positional information. According to the rule, the information always propagates from the upper layers to a certain lower layer and the message passing process is further optimized at each layer. Hence, the potential error propagation can be mitigated. Additionally, both position estimation and position broadcasting are carried out by the sensor nodes. Furthermore, a sensor activation mechanism is conceived, which is capable of significantly reducing both the energy consumption and the network traffic overhead incurred by the localization process. The analytical and numerical results provided demonstrate the superiority of our space-time hierarchical-graph based cooperative localization scheme over the benchmarking schemes considered.Comment: 14 pages, 15 figures, 4 tables, accepted to appear on IEEE Transactions on Signal Processing, Sept. 201

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    TDOA based positioning in the presence of unknown clock skew

    Get PDF
    Cataloged from PDF version of article.This paper studies the positioning problem of a single target node based on time-difference-of-arrival (TDOA) measurements in the presence of clock imperfections. Employing an affine model for the behaviour of a local clock, it is observed that TDOA based approaches suffer from a parameter of the model, called the clock skew. Modeling the clock skew as a nuisance parameter, this paper investigates joint clock skew and position estimation. The maximum likelihood estimator (MLE) is derived for this problem, which is highly nonconvex and difficult to solve. To avoid the difficulty in solving the MLE, we employ suitable approximations and relaxations and propose two suboptimal estimators based on semidefinite programming and linear estimation. To further improve the estimation accuracy, we also propose a refining step. In addition, the Cramer-Rao ´ lower bound (CRLB) is derived for this problem as a benchmark. Simulation results show that the proposed suboptimal estimators can attain the CRLB for sufficiently high signal-to-noise ratios

    Practical Accuracy Limits of Radiation-Aware Magneto-Inductive 3D Localization

    Full text link
    The key motivation for the low-frequency magnetic localization approach is that magnetic near-fields are well predictable by a free-space model, which should enable accurate localization. Yet, limited accuracy has been reported for practical systems and it is unclear whether the inaccuracies are caused by field distortion due to nearby conductors, unconsidered radiative propagation, or measurement noise. Hence, we investigate the practical performance limits by means of a calibrated magnetoinductive system which localizes an active single-coil agent with arbitrary orientation, using 4 mW transmit power at 500 kHz. The system uses eight single-coil anchors around a 3m x 3m area in an office room. We base the location estimation on a complex baseband model which comprises both reactive and radiative propagation. The link coefficients, which serve as input data for location estimation, are measured with a multiport network analyzer while the agent is moved with a positioner device. This establishes a reliable ground truth for calibration and evaluation. The system achieves a median position error of 3.2 cm and a 90th percentile of 8.3 cm. After investigating the model error we conjecture that field distortion due to conducting building structures is the main cause of the performance bottleneck. The results are complemented with predictions on the achievable accuracy in more suitable circumstances using the Cram\'er-Rao lower bound.Comment: To appear at the IEEE ICC 2019 Workshops. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    corecore