50,428 research outputs found

    Conservative classical and quantum resolution limits for incoherent imaging

    Full text link
    I propose classical and quantum limits to the statistical resolution of two incoherent optical point sources from the perspective of minimax parameter estimation. Unlike earlier results based on the Cram\'er-Rao bound, the limits proposed here, based on the worst-case error criterion and a Bayesian version of the Cram\'er-Rao bound, are valid for any biased or unbiased estimator and obey photon-number scalings that are consistent with the behaviors of actual estimators. These results prove that, from the minimax perspective, the spatial-mode demultiplexing (SPADE) measurement scheme recently proposed by Tsang, Nair, and Lu [Phys. Rev. X 6, 031033 (2016)] remains superior to direct imaging for sufficiently high photon numbers.Comment: 12 pages, 2 figures. v2: focused on imaging, cleaned up the math, added new analytic and numerical results. v3: restructured and submitte

    Exploring plenoptic properties of correlation imaging with chaotic light

    Full text link
    In a setup illuminated by chaotic light, we consider different schemes that enable to perform imaging by measuring second-order intensity correlations. The most relevant feature of the proposed protocols is the ability to perform plenoptic imaging, namely to reconstruct the geometrical path of light propagating in the system, by imaging both the object and the focusing element. This property allows to encode, in a single data acquisition, both multi-perspective images of the scene and light distribution in different planes between the scene and the focusing element. We unveil the plenoptic property of three different setups, explore their refocusing potentialities and discuss their practical applications.Comment: 9 pages, 4 figure

    Mapping Atomic Motions with Electrons: Toward the Quantum Limit to Imaging Chemistry

    Get PDF
    Recent advances in ultrafast electron and X-ray diffraction have pushed imaging of structural dynamics into the femtosecond time domain, that is, the fundamental time scale of atomic motion. New physics can be reached beyond the scope of traditional diffraction or reciprocal space imaging. By exploiting the high time resolution, it has been possible to directly observe the collapse of nearly innumerable possible nuclear motions to a few key reaction modes that direct chemistry. It is this reduction in dimensionality in the transition state region that makes chemistry a transferable concept, with the same class of reactions being applicable to synthetic strategies to nearly arbitrary levels of complexity. The ability to image the underlying key reaction modes has been achieved with resolution to relative changes in atomic positions to better than 0.01 Å, that is, comparable to thermal motions. We have effectively reached the fundamental space-time limit with respect to the reaction energetics and imaging the acting forces. In the process of ensemble measured structural changes, we have missed the quantum aspects of chemistry. This perspective reviews the current state of the art in imaging chemistry in action and poses the challenge to access quantum information on the dynamics. There is the possibility with the present ultrabright electron and X-ray sources, at least in principle, to do tomographic reconstruction of quantum states in the form of a Wigner function and density matrix for the vibrational, rotational, and electronic degrees of freedom. Accessing this quantum information constitutes the ultimate demand on the spatial and temporal resolution of reciprocal space imaging of chemistry. Given the much shorter wavelength and corresponding intrinsically higher spatial resolution of current electron sources over X-rays, this Perspective will focus on electrons to provide an overview of the challenge on both the theory and the experimental fronts to extract the quantum aspects of molecular dynamics

    Superresolution without Separation

    Full text link
    This paper provides a theoretical analysis of diffraction-limited superresolution, demonstrating that arbitrarily close point sources can be resolved in ideal situations. Precisely, we assume that the incoming signal is a linear combination of M shifted copies of a known waveform with unknown shifts and amplitudes, and one only observes a finite collection of evaluations of this signal. We characterize properties of the base waveform such that the exact translations and amplitudes can be recovered from 2M + 1 observations. This recovery is achieved by solving a a weighted version of basis pursuit over a continuous dictionary. Our methods combine classical polynomial interpolation techniques with contemporary tools from compressed sensing.Comment: 23 pages, 8 figure

    Quantum Theory of Superresolution for Two Incoherent Optical Point Sources

    Full text link
    Rayleigh's criterion for resolving two incoherent point sources has been the most influential measure of optical imaging resolution for over a century. In the context of statistical image processing, violation of the criterion is especially detrimental to the estimation of the separation between the sources, and modern farfield superresolution techniques rely on suppressing the emission of close sources to enhance the localization precision. Using quantum optics, quantum metrology, and statistical analysis, here we show that, even if two close incoherent sources emit simultaneously, measurements with linear optics and photon counting can estimate their separation from the far field almost as precisely as conventional methods do for isolated sources, rendering Rayleigh's criterion irrelevant to the problem. Our results demonstrate that superresolution can be achieved not only for fluorophores but also for stars.Comment: 18 pages, 11 figures. v1: First draft. v2: Improved the presentation and added a section on the issues of unknown centroid and misalignment. v3: published in Physical Review

    Quantum metrology and its application in biology

    Full text link
    Quantum metrology provides a route to overcome practical limits in sensing devices. It holds particular relevance to biology, where sensitivity and resolution constraints restrict applications both in fundamental biophysics and in medicine. Here, we review quantum metrology from this biological context, focusing on optical techniques due to their particular relevance for biological imaging, sensing, and stimulation. Our understanding of quantum mechanics has already enabled important applications in biology, including positron emission tomography (PET) with entangled photons, magnetic resonance imaging (MRI) using nuclear magnetic resonance, and bio-magnetic imaging with superconducting quantum interference devices (SQUIDs). In quantum metrology an even greater range of applications arise from the ability to not just understand, but to engineer, coherence and correlations at the quantum level. In the past few years, quite dramatic progress has been seen in applying these ideas into biological systems. Capabilities that have been demonstrated include enhanced sensitivity and resolution, immunity to imaging artifacts and technical noise, and characterization of the biological response to light at the single-photon level. New quantum measurement techniques offer even greater promise, raising the prospect for improved multi-photon microscopy and magnetic imaging, among many other possible applications. Realization of this potential will require cross-disciplinary input from researchers in both biology and quantum physics. In this review we seek to communicate the developments of quantum metrology in a way that is accessible to biologists and biophysicists, while providing sufficient detail to allow the interested reader to obtain a solid understanding of the field. We further seek to introduce quantum physicists to some of the central challenges of optical measurements in biological science.Comment: Submitted review article, comments and suggestions welcom

    Optimal measurements for quantum spatial superresolution

    Get PDF
    We construct optimal measurements, achieving the ultimate precision predicted by quantum theory, for the simultaneous estimation of centroid, separation, and relative intensities of two incoherent point sources using a linear optical system. We discuss the physical feasibility of the scheme, which could pave the way for future practical implementations of quantum inspired imaging.Comment: 7 pages. 3 color figures. Title change
    corecore