119 research outputs found

    RealTime Implementation Of An Internal-Model-Principle Signal Identifier

    Get PDF
    This thesis presents a new means approach of tuning an adaptive internal model principle based signal identification algorithm whose computational costs are low enough to allow a realtime implementation. The algorithm allows an instantaneous Fourier decomposition of nonstationary signals that have a strongly predictable component. The algorithm is implemented as a feedback loop resulting in a closed loop system with a frequency response of a bandpass filter with notches at the frequencies of the Fourier decomposition. This is achieved through real time selection of the coefficients of the transfer functions in the feedback loop. Previous work showed how the dynamics of the algorithm could be chosen to be represented by a bandpass filter with notches. However this involved solving a large set of coupled linear equations. This thesis shows how the equations can be decoupled into pairs of linear equations which have explicit solutions. In other word, rules for explicitly solving for these parameters are given that only involve evaluating frequency responses at the frequencies of the instantaneous Fourier decomposition. Last but not the least, alternative approach for choosing suitable coefficients to eliminate the DC component of the signal under consideration has been proposed as well by replacing a frequency response of a bandpass filter with lowpass filter and adding a model of the constant signal to the feedback loop

    Induction Machine Diagnosis using Stator Current Advanced Signal Processing

    No full text
    International audienceInduction machines are widely used in industrial applications. Safety, reliability, efficiency and performance are major concerns that direct the research activities in the field of electrical machines. Even though the induction machines are very reliable, many failures can occur such as bearing faults, air-gap eccentricity and broken rotor bars. Therefore, the challenge is to detect them at an early stage in order to prevent breakdowns. In particular, stator current-based condition monitoring is an extensively investigated field for cost and maintenance savings. In fact, several signal processing techniques for stator current-based induction machine faults detection have been studied. These techniques can be classified into: spectral analysis approaches, demodulation techniques and time-frequency representations. In addition, for diagnostic purposes, more sophisticated techniques are required in order to determine the faulty components. This paper intends to review the spectral analysis techniques and time-frequency representations. These techniques are demonstrated on experimental data issued from a test bed equipped with a 0.75 kW induction machine. Nomenclature O&M = Operation and Maintenance; WTG = Wind Turbine Generator; MMF = Magneto-Motive Force; MCSA = Motor Current signal Analysis; PSD = Power Spectral Density; FFT = Fast Fourier Transform; DFT = Discrete Fourier Transform; MUSIC = MUltiple SIgnal Characterization; ESPRIT = Estimation of Signal Parameters via Rotational Invariance Techniques; SNR = Signal to Noise Ratio; MLE = Maximum Likelihood Estimation; STFT = Short-Time Fourier Transform; CWT = Continuous Wavelet Transform; WVD = Wigner-Ville distribution; HHT = Hilbert-Huang Transform; DWT = Discrete Wavelet Transform; EMD = Empirical Mode Decomposition; IMF = Intrinsic Mode Function; AM = Amplitude Modulation; FM = Frequency Modulation; IA = Instantaneous Amplitude; IF = Instantaneous Frequency; í µí± ! = Supply frequency; í µí± ! = Rotational frequency; í µí± ! = Fault frequency introduced by the modified rotor MMF; í µí± ! = Characteristic vibration frequencies; í µí± !"# = Bearing defects characteristic frequency; í µí± !" = Bearing outer raceway defect characteristic frequency; í µí± !" = Bearing inner raceway defect characteristic frequency; í µí± !" = Bearing balls defect characteristic frequency; í µí± !"" = Eccentricity characteristic frequency; í µí± ! = Number of rotor bars or rotor slots; í µí± = Slip; í µí°¹ ! = Sampling frequency; í µí± = Number of samples; í µí±¤[. ] = Time-window (Hanning, Hamming, etc.); í µí¼ = Time-delay; í µí¼ ! = Variance; ℎ[. ] = Time-window

    Signal Identification In Discrete-Time Based On Internal-Model-Principle

    Get PDF
    This work presents an implementation of a signal identification algorithm which is based on the internal model principle. By using several internal models in feedback with a tuning function, this algorithm can decompose a signal into narrow-band signals and identify the frequencies, amplitudes and relative phases. A desired band-pass filter response can be achieved by selecting appropriate coefficients of the controllers and tuning functions, which can reject the noise and improve the performance. To achieve a result with fast transient characteristics, this system is then modified by adding a low-pass filter. This work is based on the previous work in continuous time. However, a discrete implementation should be much more practical. The simulation result shows a good tracking of the original signal with minimal response to measurement noise

    Comprehensive Review on Detection and Classification of Power Quality Disturbances in Utility Grid With Renewable Energy Penetration

    Get PDF
    The global concern with power quality is increasing due to the penetration of renewable energy (RE) sources to cater the energy demands and meet de-carbonization targets. Power quality (PQ) disturbances are found to be more predominant with RE penetration due to the variable outputs and interfacing converters. There is a need to recognize and mitigate PQ disturbances to supply clean power to the consumer. This article presents a critical review of techniques used for detection and classification PQ disturbances in the utility grid with renewable energy penetration. The broad perspective of this review paper is to provide various concepts utilized for extraction of the features to detect and classify the PQ disturbances even in the noisy environment. More than 220 research publications have been critically reviewed, classified and listed for quick reference of the engineers, scientists and academicians working in the power quality area

    Time-frequency techniques for modal parameters identification of civil structures from acquired dynamic signals

    Get PDF
    A major trust of modal parameters identification (MPI) research in recent years has been based on using artificial and natural vibrations sources because vibration measurements can reflect the true dynamic behavior of a structure while analytical prediction methods, such as finite element models, are less accurate due to the numerous structural idealizations and uncertainties involved in the simulations. This paper presents a state-of-the-art review of the time-frequency techniques for modal parameters identification of civil structures from acquired dynamic signals as well as the factors that affect the estimation accuracy. Further, the latest signal processing techniques proposed since 2012 are also reviewed. These algorithms are worth being researched for MPI of large real-life structures because they provide good time-frequency resolution and noise-immunity

    Empirical mode decomposition of wind speed signals

    Get PDF
    Empirical Mode Decomposition (EMD) is a powerful signal processing technique with diverse applications, particularly in the analysis of non-stationary data. In this study, we assess the capabilities of EMD for wind data analysis, aiming to uncover its effectiveness in capturing intricate temporal patterns and decomposing data into Intrinsic Mode Functions (IMFs) to identify crucial frequency components. Various methods of sifting have been studied as the IMFs and therefore results may vary according to the type. It has been concluded that the Ensemble Empirical Mode Decomposition (EEMD) is the most suitable method for these data. A comparison with Fourier analysis is also conducted to elucidate the strengths and limitations of each method. Furthermore, this investigation examines the Average Diurnal Variation (ADV) and Average Seasonal Variation (ASV) patterns within the wind data. It is found that these patters have a physical significance and interpretation of the IMFs and that it is easier to use EMD than Fourier for wind signals

    New advanced methods for the spectral analysis of time-varying waveforms in power systems

    Get PDF
    This thesis presents new advanced methods for the spectral analysis of time-varying waveforms in power systems. First, the main non-parametric, parametric and hybrid methods are presented in details under an analytical review of the state of the art, stressing both their advantages and their weaknesses. Then, a new advanced modified parametric method and three new advanced hybrid methods are presented in this thesis. All of the proposed methods guarantee an accuracy typical of the parametric methods, though with a significantly lower computational efforts

    Dynamic Response of Silo Supporting Structure under Pulsating Loads

    Get PDF
    Silo quaking is a time varying mass structural dynamic problem and the existence of a silo quake spectrum is confirmed in this research. The outcomes confirm that silo quaking can be prevented by providing the silo structure with sufficient mass, stiffness and damping to counterbalance the effects of pulsating forces and mass losses. Furthermore, dynamic structural analysis algorithms and software need to be developed to solve time varying mass structural dynamic problems
    corecore