8,112 research outputs found

    Problems in Mathematical Finance Related to Transaction Costs and Model Uncertainty.

    Full text link
    This thesis is devoted to the study of three problems in mathematical finance which involve either transaction costs or model uncertainty or both. In Chapter II, we investigate the Fundamental Theorem of Asset Pricing (FTAP) under both transaction costs and model uncertainty, where model uncertainty is described by a family of probability measures, possibly non-dominated. We first show that the recent results on the FTAP and the super-hedging theorem in the context of model uncertainty can be extended to the case where only options available for static hedging (hedging options) are quoted with bid-ask spreads. In this set-up, we need to work with the notion of robust no-arbitrage which turns out to be equivalent to no-arbitrage under the additional assumption that hedging options with non-zero spread are non-redundant. Next, we look at the more difficult case where the market consists of a money market and a dynamically traded stock with bid-ask spread. Under a continuity assumption, we prove using a backward-forward scheme that no-arbitrage is equivalent to the existence of a suitable family of consistent price systems. In Chapter III, we study the problem where an individual targets at a given consumption rate, invests in a risky financial market, and seeks to minimize the probability of lifetime ruin under drift uncertainty. Using stochastic control, we characterize the value function as the unique classical solution of an associated Hamilton-Jacobi-Bellman (HJB) equation, obtain feedback forms for the optimal investment and drift distortion, and discuss their dependence on various model parameters. In analyzing the HJB equation, we establish the existence and uniqueness of viscosity solution using Perron's method, and then upgrade regularity by working with an equivalent convex problem obtained via the Cole-Hopf transformation. In Chapter IV, we adapt stochastic Perron's method to the lifetime ruin problem under proportional transaction costs which can be formulated as a singular stochastic control problem. Without relying on the Dynamic Programming Principle, we characterize the value function as the unique viscosity solution of an associated variational inequality. We also provide a complete proof of the comparison principle which is the main assumption of stochastic Perron's method.PhDApplied and Interdisciplinary MathematicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111560/1/yuchong_1.pd

    Consistent Price Systems under Model Uncertainty

    Full text link
    We develop a version of the fundamental theorem of asset pricing for discrete-time markets with proportional transaction costs and model uncertainty. A robust notion of no-arbitrage of the second kind is defined and shown to be equivalent to the existence of a collection of strictly consistent price systems.Comment: 19 page

    A note on the Fundamental Theorem of Asset Pricing under model uncertainty

    Full text link
    We show that the results of ArXiv:1305.6008 on the Fundamental Theorem of Asset Pricing and the super-hedging theorem can be extended to the case in which the options available for static hedging (\emph{hedging options}) are quoted with bid-ask spreads. In this set-up, we need to work with the notion of \emph{robust no-arbitrage} which turns out to be equivalent to no-arbitrage under the additional assumption that hedging options with non-zero spread are \emph{non-redundant}. A key result is the closedness of the set of attainable claims, which requires a new proof in our setting.Comment: Final version. To appear in Risk

    Conditional-Mean Hedging Under Transaction Costs in Gaussian Models

    Get PDF
    We consider so-called regular invertible Gaussian Volterra processes and derive a formula for their prediction laws. Examples of such processes include the fractional Brownian motions and the mixed fractional Brownian motions. As an application, we consider conditional-mean hedging under transaction costs in Black-Scholes type pricing models where the Brownian motion is replaced with a more general regular invertible Gaussian Volterra process.Comment: arXiv admin note: text overlap with arXiv:1706.0153

    Utility indifference pricing with market incompleteness

    Get PDF
    Utility indifference pricing and hedging theory is presented, showing how it leads to linear or to non-linear pricing rules for contingent claims. Convex duality is first used to derive probabilistic representations for exponential utility-based prices, in a general setting with locally bounded semi-martingale price processes. The indifference price for a finite number of claims gives a non-linear pricing rule, which reduces to a linear pricing rule as the number of claims tends to zero, resulting in the so-called marginal utility-based price of the claim. Applications to basis risk models with lognormal price processes, under full and partial information scenarios are then worked out in detail. In the full information case, a claim on a non-traded asset is priced and hedged using a correlated traded asset. The resulting hedge requires knowledge of the drift parameters of the asset price processes, which are very difficult to estimate with any precision. This leads naturally to a further application, a partial information problem, with the drift parameters assumed to be random variables whose values are revealed to the hedger in a Bayesian fashion via a filtering algorithm. The indifference price is given by the solution to a non-linear PDE, reducing to a linear PDE for the marginal price when the number of claims becomes infinitesimally small

    Coherent Price Systems and Uncertainty-Neutral Valuation

    Get PDF
    We consider fundamental questions of arbitrage pricing arising when the uncertainty model is given by a set of possible mutually singular probability measures. With a single probability model, essential equivalence between the absence of arbitrage and the existence of an equivalent martingale measure is a folk theorem, see Harrison and Kreps (1979). We establish a microeconomic foundation of sublinear price systems and present an extension result. In this context we introduce a prior dependent notion of marketed spaces and viable price systems. We associate this extension with a canonically altered concept of equivalent symmetric martingale measure sets, in a dynamic trading framework under absence of prior depending arbitrage. We prove the existence of such sets when volatility uncertainty is modeled by a stochastic differential equation, driven by Peng's G-Brownian motions
    corecore