66 research outputs found

    Fundamental Matrix of a Stereo Pair, with A Contrario Elimination of Outliers

    Full text link

    New approach to calculating the fundamental matrix

    Get PDF
    The estimation of the fundamental matrix (F) is to determine the epipolar geometry and to establish a geometrical relation between two images of the same scene or elaborate video frames. In the literature, we find many techniques that have been proposed for robust estimations such as RANSAC (random sample consensus), least-squares median (LMeds), and M estimators as exhaustive. This article presents a comparison between the different detectors that are (Harris, FAST, SIFT, and SURF) in terms of detected points number, the number of correct matches and the computation speed of the ‘F’. Our method based first on the extraction of descriptors by the algorithm (SURF) was used in comparison to the other one because of its robustness, then set the threshold of uniqueness to obtain the best points and also normalize these points and rank it according to the weighting function of the different regions at the end of the estimation of the matrix''F'' by the technique of the M-estimator at eight points, to calculate the average error and the speed of the calculation ''F''. The results of the experimental simulation were applied to the real images with different changes of viewpoints, for example (rotation, lighting, and moving object), give a good agreement in terms of the counting speed of the fundamental matrix and the acceptable average error. The results of the simulation show this technique of use in real-time application

    Virtual Line Descriptor and Semi-Local Matching Method for Reliable Feature Correspondence

    Get PDF
    International audienceFinding reliable correspondences between sets of feature points in two images remains challenging in case of ambiguities or strong transformations. In this paper, we define a photometric descriptor for virtual lines that join neighbouring feature points. We show that it can be used in the second-order term of existing graph matchers to significantly improve their accuracy. We also define a semi-local matching method based on this descriptor. We show that it is robust to strong transformations and more accurate than existing graph matchers for scenes with significant occlusions, including for very low inlier rates. Used as a preprocessor to filter outliers from match candidates, it significantly improves the robustness of RANSAC and reduces camera calibration errors

    Meaningful Matches in Stereovision

    Full text link
    This paper introduces a statistical method to decide whether two blocks in a pair of of images match reliably. The method ensures that the selected block matches are unlikely to have occurred "just by chance." The new approach is based on the definition of a simple but faithful statistical "background model" for image blocks learned from the image itself. A theorem guarantees that under this model not more than a fixed number of wrong matches occurs (on average) for the whole image. This fixed number (the number of false alarms) is the only method parameter. Furthermore, the number of false alarms associated with each match measures its reliability. This "a contrario" block-matching method, however, cannot rule out false matches due to the presence of periodic objects in the images. But it is successfully complemented by a parameterless "self-similarity threshold." Experimental evidence shows that the proposed method also detects occlusions and incoherent motions due to vehicles and pedestrians in non simultaneous stereo.Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence 99, Preprints (2011) 1-1

    AffineGlue: Joint Matching and Robust Estimation

    Full text link
    We propose AffineGlue, a method for joint two-view feature matching and robust estimation that reduces the combinatorial complexity of the problem by employing single-point minimal solvers. AffineGlue selects potential matches from one-to-many correspondences to estimate minimal models. Guided matching is then used to find matches consistent with the model, suffering less from the ambiguities of one-to-one matches. Moreover, we derive a new minimal solver for homography estimation, requiring only a single affine correspondence (AC) and a gravity prior. Furthermore, we train a neural network to reject ACs that are unlikely to lead to a good model. AffineGlue is superior to the SOTA on real-world datasets, even when assuming that the gravity direction points downwards. On PhotoTourism, the AUC@10{\deg} score is improved by 6.6 points compared to the SOTA. On ScanNet, AffineGlue makes SuperPoint and SuperGlue achieve similar accuracy as the detector-free LoFTR

    Study of Computational Image Matching Techniques: Improving Our View of Biomedical Image Data

    Get PDF
    Image matching techniques are proven to be necessary in various fields of science and engineering, with many new methods and applications introduced over the years. In this PhD thesis, several computational image matching methods are introduced and investigated for improving the analysis of various biomedical image data. These improvements include the use of matching techniques for enhancing visualization of cross-sectional imaging modalities such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), denoising of retinal Optical Coherence Tomography (OCT), and high quality 3D reconstruction of surfaces from Scanning Electron Microscope (SEM) images. This work greatly improves the process of data interpretation of image data with far reaching consequences for basic sciences research. The thesis starts with a general notion of the problem of image matching followed by an overview of the topics covered in the thesis. This is followed by introduction and investigation of several applications of image matching/registration in biomdecial image processing: a) registration-based slice interpolation, b) fast mesh-based deformable image registration and c) use of simultaneous rigid registration and Robust Principal Component Analysis (RPCA) for speckle noise reduction of retinal OCT images. Moving towards a different notion of image matching/correspondence, the problem of view synthesis and 3D reconstruction, with a focus on 3D reconstruction of microscopic samples from 2D images captured by SEM, is considered next. Starting from sparse feature-based matching techniques, an extensive analysis is provided for using several well-known feature detector/descriptor techniques, namely ORB, BRIEF, SURF and SIFT, for the problem of multi-view 3D reconstruction. This chapter contains qualitative and quantitative comparisons in order to reveal the shortcomings of the sparse feature-based techniques. This is followed by introduction of a novel framework using sparse-dense matching/correspondence for high quality 3D reconstruction of SEM images. As will be shown, the proposed framework results in better reconstructions when compared with state-of-the-art sparse-feature based techniques. Even though the proposed framework produces satisfactory results, there is room for improvements. These improvements become more necessary when dealing with higher complexity microscopic samples imaged by SEM as well as in cases with large displacements between corresponding points in micrographs. Therefore, based on the proposed framework, a new approach is proposed for high quality 3D reconstruction of microscopic samples. While in case of having simpler microscopic samples the performance of the two proposed techniques are comparable, the new technique results in more truthful reconstruction of highly complex samples. The thesis is concluded with an overview of the thesis and also pointers regarding future directions of the research using both multi-view and photometric techniques for 3D reconstruction of SEM images

    Tree-Based Morse Regions: A Topological Approach to Local Feature Detection

    Get PDF
    International audience—This paper introduces a topological approach to local invariant feature detection motivated by Morse theory. We use the critical points of the graph of the intensity image, revealing directly the topology information as initial " interest " points. Critical points are selected from what we call a tree-based shape-space. Specifically, they are selected from both the connected components of the upper level sets of the image (the Max-tree) and those of the lower level sets (the Min-tree). They correspond to specific nodes on those two trees: (1) to the leaves (extrema) and (2) to the nodes having bifurcation (saddle points). We then associate to each critical point the largest region that contains it and is topologically equivalent in its tree. We call such largest regions the Tree-Based Morse Regions (TBMR). TBMR can be seen as a variant of MSER, which are contrasted regions. Contrarily to MSER, TBMR relies only on topological information and thus fully inherit the invariance properties of the space of shapes (e.g., invariance to affine contrast changes and covariance to continuous transformations). In particular, TBMR extracts the regions independently of the contrast, which makes it truly contrast invariant. Furthermore, it is quasi parameter-free. TBMR extraction is fast, having the same complexity as MSER. Experimentally, TBMR achieves a repeatability on par with state-of-the-art methods, but obtains a significantly higher number of features. Both the accuracy and the robustness of TBMR are demonstrated by applications to image registration and 3D reconstruction
    • 

    corecore