283 research outputs found

    Fundamental Limits of Spectrum Sharing for NOMA-based Cooperative Relaying

    Full text link
    Non-orthogonal multiple access (NOMA) and spectrum sharing (SS) are two emerging multiple access technologies for efficient spectrum utilization in the fifth-generation (5G) wireless communications standard. In this paper, we present a closed-form analysis of the average achievable sum-rate and outage probability for a NOMA-based cooperative relaying system (CRS) in an underlay spectrum sharing scenario. We consider a peak interference constraint, where the interference inflicted by the secondary (unlicensed) network on the primary-user (licensed) receiver (PU-Rx) should be less than a predetermined threshold. We show that the CRS-NOMA outperforms the CRS with conventional orthogonal multiple access (OMA) for large values of peak interference power at the PU-Rx.Comment: 3 figures, Accepted for presentation in GLOBECOM-NOMAT5G workshop, Abu Dhabi, 201

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Cooperative Relaying System employing OFDM based NOMA System

    Get PDF

    Hardware and Interference Limited Cooperative CR-NOMA Networks under Imperfect SIC and CSI

    Full text link
    The conflation of cognitive radio (CR) and nonorthogonal multiple access (NOMA) concepts is a promising approach to fulfil the massive connectivity goals of future networks given the spectrum scarcity. Accordingly, this letter investigates the outage performance of imperfect cooperative CR-NOMA networks under hardware impairments and interference. Our analysis is involved with the derivation of the end-to-end outage probability (OP) for secondary NOMA users by accounting for imperfect channel state information (CSI), as well as the residual interference caused by successive interference cancellation (SIC) errors and coexisting primary/secondary users. The numerical results validated by Monte Carlo simulations show that CR-NOMA network provides a superior outage performance over orthogonal multiple access. As imperfections become more significant, CR-NOMA is observed to deliver relatively poor outage performance.Comment: 5 pages, 4 figure
    corecore