3,063 research outputs found

    Lossy joint source-channel coding in the finite blocklength regime

    Get PDF
    This paper finds new tight finite-blocklength bounds for the best achievable lossy joint source-channel code rate, and demonstrates that joint source-channel code design brings considerable performance advantage over a separate one in the non-asymptotic regime. A joint source-channel code maps a block of kk source symbols onto a length−n-n channel codeword, and the fidelity of reproduction at the receiver end is measured by the probability ϵ\epsilon that the distortion exceeds a given threshold dd. For memoryless sources and channels, it is demonstrated that the parameters of the best joint source-channel code must satisfy nC−kR(d)≈nV+kV(d)Q(ϵ)nC - kR(d) \approx \sqrt{nV + k \mathcal V(d)} Q(\epsilon), where CC and VV are the channel capacity and channel dispersion, respectively; R(d)R(d) and V(d)\mathcal V(d) are the source rate-distortion and rate-dispersion functions; and QQ is the standard Gaussian complementary cdf. Symbol-by-symbol (uncoded) transmission is known to achieve the Shannon limit when the source and channel satisfy a certain probabilistic matching condition. In this paper we show that even when this condition is not satisfied, symbol-by-symbol transmission is, in some cases, the best known strategy in the non-asymptotic regime

    Joint source-channel coding with feedback

    Get PDF
    This paper quantifies the fundamental limits of variable-length transmission of a general (possibly analog) source over a memoryless channel with noiseless feedback, under a distortion constraint. We consider excess distortion, average distortion and guaranteed distortion (dd-semifaithful codes). In contrast to the asymptotic fundamental limit, a general conclusion is that allowing variable-length codes and feedback leads to a sizable improvement in the fundamental delay-distortion tradeoff. In addition, we investigate the minimum energy required to reproduce kk source samples with a given fidelity after transmission over a memoryless Gaussian channel, and we show that the required minimum energy is reduced with feedback and an average (rather than maximal) power constraint.Comment: To appear in IEEE Transactions on Information Theor
    • …
    corecore