19,793 research outputs found

    Fundamental Limitations of Disturbance Attenuation in the Presence of Side Information

    Get PDF
    In this paper, we study fundamental limitations of disturbance attenuation of feedback systems, under the assumption that the controller has a finite horizon preview of the disturbance. In contrast with prior work, we extend Bode's integral equation for the case where the preview is made available to the controller via a general, finite capacity, communication system. Under asymptotic stationarity assumptions, our results show that the new fundamental limitation differs from Bode's only by a constant, which quantifies the information rate through the communication system. In the absence of asymptotic stationarity, we derive a universal lower bound which uses Shannon's entropy rate as a measure of performance. By means of a case-study, we show that our main bounds may be achieved

    Fundamental Limitations of Disturbance Attenuation in the Presence of Side Information

    Get PDF
    In this paper, we study fundamental limitations of disturbance attenuation of feedback systems, under the assumption that the controller has a finite horizon preview of the disturbance. In contrast with prior work, we extend Bode’s integral equation for the case where the preview is made available to the controller via a general, finite capacity, communication system. Under asymptotic stationarity assumptions, our results show that the new fundamental limitation differs from Bode’s only by a constant, which quantifies the information rate through the communication system. In the absence of stationarity, we derive a universal lower bound which uses entropy rates as a measure of performance

    Fundamental Limitations of Disturbance Attenuation in the Presence of Side Information

    Get PDF
    In this paper, we study fundamental limitations of disturbance attenuation of feedback systems, under the assumption that the controller has a finite horizon preview of the disturbance. In contrast with prior work, we extend Bode’s integral equation for the case where the preview is made available to the controller via a general, finite capacity, communication system. Under asymptotic stationarity assumptions, our results show that the new fundamental limitation differs from Bode’s only by a constant, which quantifies the information rate through the communication system. In the absence of stationarity, we derive a universal lower bound which uses entropy rates as a measure of performance

    Fundamental Limitations of Disturbance Attenuation in the Presence of Side Information

    Full text link

    Learning and Reacting with Inaccurate Prediction: Applications to Autonomous Excavation

    Get PDF
    Motivated by autonomous excavation, this work investigates solutions to a class of problem where disturbance prediction is critical to overcoming poor performance of a feedback controller, but where the disturbance prediction is intrinsically inaccurate. Poor feedback controller performance is related to a fundamental control problem: there is only a limited amount of disturbance rejection that feedback compensation can provide. It is known, however, that predictive action can improve the disturbance rejection of a control system beyond the limitations of feedback. While prediction is desirable, the problem in excavation is that disturbance predictions are prone to error due to the variability and complexity of soil-tool interaction forces. This work proposes the use of iterative learning control to map the repetitive components of excavation forces into feedforward commands. Although feedforward action shows useful to improve excavation performance, the non-repetitive nature of soil-tool interaction forces is a source of inaccurate predictions. To explicitly address the use of imperfect predictive compensation, a disturbance observer is used to estimate the prediction error. To quantify inaccuracy in prediction, a feedforward model of excavation disturbances is interpreted as a communication channel that transmits corrupted disturbance previews, for which metrics based on the sensitivity function exist. During field trials the proposed method demonstrated the ability to iteratively achieve a desired dig geometry, independent of the initial feasibility of the excavation passes in relation to actuator saturation. Predictive commands adapted to different soil conditions and passes were repeated autonomously until a pre-specified finish quality of the trench was achieved. Evidence of improvement in disturbance rejection is presented as a comparison of sensitivity functions of systems with and without the use of predictive disturbance compensation
    • …
    corecore