121,728 research outputs found

    From Social Simulation to Integrative System Design

    Full text link
    As the recent financial crisis showed, today there is a strong need to gain "ecological perspective" of all relevant interactions in socio-economic-techno-environmental systems. For this, we suggested to set-up a network of Centers for integrative systems design, which shall be able to run all potentially relevant scenarios, identify causality chains, explore feedback and cascading effects for a number of model variants, and determine the reliability of their implications (given the validity of the underlying models). They will be able to detect possible negative side effect of policy decisions, before they occur. The Centers belonging to this network of Integrative Systems Design Centers would be focused on a particular field, but they would be part of an attempt to eventually cover all relevant areas of society and economy and integrate them within a "Living Earth Simulator". The results of all research activities of such Centers would be turned into informative input for political Decision Arenas. For example, Crisis Observatories (for financial instabilities, shortages of resources, environmental change, conflict, spreading of diseases, etc.) would be connected with such Decision Arenas for the purpose of visualization, in order to make complex interdependencies understandable to scientists, decision-makers, and the general public.Comment: 34 pages, Visioneer White Paper, see http://www.visioneer.ethz.c

    Project report. A subtropical urban community, investigating medium to high density residential typologies by Design Charrette

    Get PDF
    The Centre for Subtropical Design at QUT, in partnership with the Queensland Government and Brisbane City Council, conducts research focused on 'best practice' outcomes for higher density urban living environments in the subtropics through the study of typical urban residential typologies, and urban design. The aim of the research is to inform and illustrate best practice subtropical design principles to policy makers and development industry professionals to stimulate climate-responsive outcomes. The Centre for Subtropical Design recently sought project-specific funding from the Queensland Department of Infrastructure and Planning (DIP) to investigate residential typologies for sustainable subtropical urban communities, based on transit orientated development principles and outcomes for areas around public transport nodes. A development site within the Fitzgibbon Urban Development Area, and close to a rail and bsu transport corridor, provided a case study location for this project. Four design-led multi-disciplinary creative teams participated in a Design Charrette and have produced concept drawings and propositions on a range of options, or prototypes. Analysis of selected prototypes has been undertaken to determine their environmental, economic and social performance. This Project Report discusses the scope of the project funded by DIP in terms of activities undertaken to date, and deliverables achieved. A subsequent Research Report will discuss the detailed findings of the analysis

    Perception, cognition, and action in hyperspaces: implications on brain plasticity, learning, and cognition

    Get PDF
    We live in a three-dimensional (3D) spatial world; however, our retinas receive a pair of 2D projections of the 3D environment. By using multiple cues, such as disparity, motion parallax, perspective, our brains can construct 3D representations of the world from the 2D projections on our retinas. These 3D representations underlie our 3D perceptions of the world and are mapped into our motor systems to generate accurate sensorimotor behaviors. Three-dimensional perceptual and sensorimotor capabilities emerge during development: the physiology of the growing baby changes hence necessitating an ongoing re-adaptation of the mapping between 3D sensory representations and the motor coordinates. This adaptation continues in adulthood and is quite general to successfully deal with joint-space changes (longer arms due to growth), skull and eye size changes (and still being able of accurate eye movements), etc. A fundamental question is whether our brains are inherently limited to 3D representations of the environment because we are living in a 3D world, or alternatively, our brains may have the inherent capability and plasticity of representing arbitrary dimensions; however, 3D representations emerge from the fact that our development and learning take place in a 3D world. Here, we review research related to inherent capabilities and limitations of brain plasticity in terms of its spatial representations and discuss whether with appropriate training, humans can build perceptual and sensorimotor representations of spatial 4D environments, and how the presence or lack of ability of a solid and direct 4D representation can reveal underlying neural representations of space.Published versio

    Information and communication technology solutions for outdoor navigation in dementia

    Get PDF
    INTRODUCTION: Information and communication technology (ICT) is potentially mature enough to empower outdoor and social activities in dementia. However, actual ICT-based devices have limited functionality and impact, mainly limited to safety. What is an ideal operational framework to enhance this field to support outdoor and social activities? METHODS: Review of literature and cross-disciplinary expert discussion. RESULTS: A situation-aware ICT requires a flexible fine-tuning by stakeholders of system usability and complexity of function, and of user safety and autonomy. It should operate by artificial intelligence/machine learning and should reflect harmonized stakeholder values, social context, and user residual cognitive functions. ICT services should be proposed at the prodromal stage of dementia and should be carefully validated within the life space of users in terms of quality of life, social activities, and costs. DISCUSSION: The operational framework has the potential to produce ICT and services with high clinical impact but requires substantial investment

    Controlling a mobile robot with a biological brain

    Get PDF
    The intelligent controlling mechanism of a typical mobile robot is usually a computer system. Some recent research is ongoing in which biological neurons are being cultured and trained to act as the brain of an interactive real world robot�thereby either completely replacing, or operating in a cooperative fashion with, a computer system. Studying such hybrid systems can provide distinct insights into the operation of biological neural structures, and therefore, such research has immediate medical implications as well as enormous potential in robotics. The main aim of the research is to assess the computational and learning capacity of dissociated cultured neuronal networks. A hybrid system incorporating closed-loop control of a mobile robot by a dissociated culture of neurons has been created. The system is flexible and allows for closed-loop operation, either with hardware robot or its software simulation. The paper provides an overview of the problem area, gives an idea of the breadth of present ongoing research, establises a new system architecture and, as an example, reports on the results of conducted experiments with real-life robots

    Developing a systems and informatics based approach to lifestyle monitoring within eHealth:part I - technology and data management

    Get PDF
    Lifestyle monitoring forms a subset of telecare in which data derived from sensors located in the home is used to identify variations in behaviour which are indicative of a change in care needs. Key to this is the performance of the sensors themselves and the way in which the information from multiple sources is integrated within the decision making process. The paper therefore considers the functions of the key sensors currently deployed and places their operation within the context of a proposed multi-level system structure which takes due cognisance of the requisite informatics framework

    The Algorithmic Origins of Life

    Full text link
    Although it has been notoriously difficult to pin down precisely what it is that makes life so distinctive and remarkable, there is general agreement that its informational aspect is one key property, perhaps the key property. The unique informational narrative of living systems suggests that life may be characterized by context-dependent causal influences, and in particular, that top-down (or downward) causation -- where higher-levels influence and constrain the dynamics of lower-levels in organizational hierarchies -- may be a major contributor to the hierarchal structure of living systems. Here we propose that the origin of life may correspond to a physical transition associated with a shift in causal structure, where information gains direct, and context-dependent causal efficacy over the matter it is instantiated in. Such a transition may be akin to more traditional physical transitions (e.g. thermodynamic phase transitions), with the crucial distinction that determining which phase (non-life or life) a given system is in requires dynamical information and therefore can only be inferred by identifying causal architecture. We discuss some potential novel research directions based on this hypothesis, including potential measures of such a transition that may be amenable to laboratory study, and how the proposed mechanism corresponds to the onset of the unique mode of (algorithmic) information processing characteristic of living systems.Comment: 13 pages, 1 tabl
    • …
    corecore