910 research outputs found

    Towards a Systematic Account of Different Semantics for Logic Programs

    Get PDF
    In [Hitzler and Wendt 2002, 2005], a new methodology has been proposed which allows to derive uniform characterizations of different declarative semantics for logic programs with negation. One result from this work is that the well-founded semantics can formally be understood as a stratified version of the Fitting (or Kripke-Kleene) semantics. The constructions leading to this result, however, show a certain asymmetry which is not readily understood. We will study this situation here with the result that we will obtain a coherent picture of relations between different semantics for normal logic programs.Comment: 20 page

    A syntax for semantics in P-Lingua

    Get PDF
    P-Lingua is a software framework for Membrane Computing, it includes a programming language, also called P-Lingua, for writting P system de nitions using a syntax close to standard scienti c notation. The rst line of a P-Lingua le is an unique identi er de ning the variant or model of P system to be used, i.e, the semantics of the P system. Software tools based on P-Lingua use this identi er to select a simulation algorithm implementing the corresponding derivation mode. Derivation modes de ne how to obtain a con guration Ct+1 from a con guration Ct. This information is usually hard-coded in the simulation algorithm. The P system model also de nes what types or rules can be used, the P-Lingua compiler uses the identi er to select an speci c parser for the le. In this case, a set of parsers is codi ed within the compiler tool. One for each unique identi er. P-Lingua has grown during the last 12 years, including more and more P system models. From a software engineering point of view, this approximation implies a continous development of the framework, leading to a monolithic software which is hard to debug and maintain. In this paper, we propose a new software approximation for the framework, including a new syntax for de ning rule patterns and derivation modes. The P-Lingua users can now de ne custom P system models instead of hard-coding them in the software. This approximation leads to a more exible solution which is easier to maintain and debug. Moreover, users could de ne and play with new/experimental P system models

    Preface

    Get PDF

    A Proof Theoretic View of Constraint Programming

    Get PDF
    We provide here a proof theoretic account of constraint programming that attempts to capture the essential ingredients of this programming style. We exemplify it by presenting proof rules for linear constraints over interval domains, and illustrate their use by analyzing the constraint propagation process for the {\tt SEND + MORE = MONEY} puzzle. We also show how this approach allows one to build new constraint solvers.Comment: 25 page

    Other Buds in Membrane Computing

    Get PDF
    It is well-known the huge Mario’s contribution to the development of Membrane Computing. Many researchers may relate his name to the theory of complexity classes in P systems, the research of frontiers of the tractability or the application of Membrane Computing to model real-life situations as the Quorum Sensing System in Vibrio fischeri or the Bearded Vulture ecosystem. Beyond these research areas, in the last years Mario has presented many new research lines which can be considered as buds in the robust Membrane Computing tree. Many of them were the origin of new research branches, but some others are still waiting to be developed. This paper revisits some of these buds

    Languages of lossless seeds

    Get PDF
    Several algorithms for similarity search employ seeding techniques to quickly discard very dissimilar regions. In this paper, we study theoretical properties of lossless seeds, i.e., spaced seeds having full sensitivity. We prove that lossless seeds coincide with languages of certain sofic subshifts, hence they can be recognized by finite automata. Moreover, we show that these subshifts are fully given by the number of allowed errors k and the seed margin l. We also show that for a fixed k, optimal seeds must asymptotically satisfy l ~ m^(k/(k+1)).Comment: In Proceedings AFL 2014, arXiv:1405.527

    A Simple n-Dimensional Intrinsically Universal Quantum Cellular Automaton

    Full text link
    We describe a simple n-dimensional quantum cellular automaton (QCA) capable of simulating all others, in that the initial configuration and the forward evolution of any n-dimensional QCA can be encoded within the initial configuration of the intrinsically universal QCA. Several steps of the intrinsically universal QCA then correspond to one step of the simulated QCA. The simulation preserves the topology in the sense that each cell of the simulated QCA is encoded as a group of adjacent cells in the universal QCA.Comment: 13 pages, 7 figures. In Proceedings of the 4th International Conference on Language and Automata Theory and Applications (LATA 2010), Lecture Notes in Computer Science (LNCS). Journal version: arXiv:0907.382

    Closure properties of Watson-Crick grammars

    Get PDF
    In this paper, we define Watson-Crick context-free grammars, as an extension of Watson-Crick regular grammars and Watson-Crick linear grammars with context-free grammar rules. We show the relation of Watson-Crick (regular and linear) grammars to the sticker systems, and study some of the important closure properties of the Watson-Crick grammars. We establish that the Watson-Crick regular grammars are closed under almost all of the main closure operations, while the differences between other Watson-Crick grammars with their corresponding Chomsky grammars depend on the computational power of the Watson-Crick grammars which still need to be studied
    corecore