80,654 research outputs found

    Perturbed Copula: Introducing the skew effect in the co-dependence

    Full text link
    Gaussian copulas are widely used in the industry to correlate two random variables when there is no prior knowledge about the co-dependence between them. The perturbed Gaussian copula approach allows introducing the skew information of both random variables into the co-dependence structure. The analytical expression of this copula is derived through an asymptotic expansion under the assumption of a common fast mean reverting stochastic volatility factor. This paper applies this new perturbed copula to the valuation of derivative products; in particular FX quanto options to a third currency. A calibration procedure to fit the skew of both underlying securities is presented. The action of the perturbed copula is interpreted compared to the Gaussian copula. A real worked example is carried out comparing both copulas and a local volatility model with constant correlation for varying maturities, correlations and skew configurations.Comment: 34 pages, 6 figures and 3 table

    A mixed integer linear programming model for optimal sovereign debt issuance

    Get PDF
    Copyright @ 2011, Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in the European Journal of Operational Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version is available at the link below.Governments borrow funds to finance the excess of cash payments or interest payments over receipts, usually by issuing fixed income debt and index-linked debt. The goal of this work is to propose a stochastic optimization-based approach to determine the composition of the portfolio issued over a series of government auctions for the fixed income debt, to minimize the cost of servicing debt while controlling risk and maintaining market liquidity. We show that this debt issuance problem can be modeled as a mixed integer linear programming problem with a receding horizon. The stochastic model for the interest rates is calibrated using a Kalman filter and the future interest rates are represented using a recombining trinomial lattice for the purpose of scenario-based optimization. The use of a latent factor interest rate model and a recombining lattice provides us with a realistic, yet very tractable scenario generator and allows us to do a multi-stage stochastic optimization involving integer variables on an ordinary desktop in a matter of seconds. This, in turn, facilitates frequent re-calibration of the interest rate model and re-optimization of the issuance throughout the budgetary year allows us to respond to the changes in the interest rate environment. We successfully demonstrate the utility of our approach by out-of-sample back-testing on the UK debt issuance data

    Digital Preservation Services : State of the Art Analysis

    Get PDF
    Research report funded by the DC-NET project.An overview of the state of the art in service provision for digital preservation and curation. Its focus is on the areas where bridging the gaps is needed between e-Infrastructures and efficient and forward-looking digital preservation services. Based on a desktop study and a rapid analysis of some 190 currently available tools and services for digital preservation, the deliverable provides a high-level view on the range of instruments currently on offer to support various functions within a preservation system.European Commission, FP7peer-reviewe

    Accurate Yield Curve Scenarios Generation using Functional Gradient Descent

    Get PDF
    We propose a multivariate nonparametric technique for generating reliable historical yield curve scenarios and confidence intervals. The approach is based on a Functional Gradient Descent (FGD) estimation of the conditional mean vector and volatility matrix of a multivariate interest rate series. It is computationally feasible in large dimensions and it can account for non-linearities in the dependence of interest rates at all available maturities. Based on FGD we apply filtered historical simulation to compute reliable out-of-sample yield curve scenarios and confidence intervals. We back-test our methodology on daily USD bond data for forecasting horizons from 1 to 10 days. Based on several statistical performance measures we find significant evidence of a higher predictive power of our method when compared to scenarios generating techniques based on (i) factor analysis, (ii) a multivariate CCC-GARCH model, or (iii) an exponential smoothing volatility estimators as in the RiskMetrics approachConditional mean and volatility estimation; Filtered Historical Simulation; Functional Gradient Descent; Term structure; Multivariate CCC-GARCH models

    D3.2 Cost Concept Model and Gateway Specification

    Get PDF
    This document introduces a Framework supporting the implementation of a cost concept model against which current and future cost models for curating digital assets can be benchmarked. The value built into this cost concept model leverages the comprehensive engagement by the 4C project with various user communities and builds upon our understanding of the requirements, drivers, obstacles and objectives that various stakeholder groups have relating to digital curation. Ultimately, this concept model should provide a critical input to the development and refinement of cost models as well as helping to ensure that the curation and preservation solutions and services that will inevitably arise from the commercial sector as ‘supply’ respond to a much better understood ‘demand’ for cost-effective and relevant tools. To meet acknowledged gaps in current provision, a nested model of curation which addresses both costs and benefits is provided. The goal of this task was not to create a single, functionally implementable cost modelling application; but rather to design a model based on common concepts and to develop a generic gateway specification that can be used by future model developers, service and solution providers, and by researchers in follow-up research and development projects.<p></p> The Framework includes:<p></p> • A Cost Concept Model—which defines the core concepts that should be included in curation costs models;<p></p> • An Implementation Guide—for the cost concept model that provides guidance and proposes questions that should be considered when developing new cost models and refining existing cost models;<p></p> • A Gateway Specification Template—which provides standard metadata for each of the core cost concepts and is intended for use by future model developers, model users, and service and solution providers to promote interoperability;<p></p> • A Nested Model for Digital Curation—that visualises the core concepts, demonstrates how they interact and places them into context visually by linking them to A Cost and Benefit Model for Curation.<p></p> This Framework provides guidance for data collection and associated calculations in an operational context but will also provide a critical foundation for more strategic thinking around curation such as the Economic Sustainability Reference Model (ESRM).<p></p> Where appropriate, definitions of terms are provided, recommendations are made, and examples from existing models are used to illustrate the principles of the framework

    Accurate Short-Term Yield Curve Forecasting using Functional Gradient Descent

    Get PDF
    We propose a multivariate nonparametric technique for generating reliable shortterm historical yield curve scenarios and confidence intervals. The approach is based on a Functional Gradient Descent (FGD) estimation of the conditional mean vector and covariance matrix of a multivariate interest rate series. It is computationally feasible in large dimensions and it can account for non-linearities in the dependence of interest rates at all available maturities. Based on FGD we apply filtered historical simulation to compute reliable out-of-sample yield curve scenarios and confidence intervals. We back-test our methodology on daily USD bond data for forecasting horizons from 1 to 10 days. Based on several statistical performance measures we find significant evidence of a higher predictive power of our method when compared to scenarios generating techniques based on (i) factor analysis, (ii) a multivariate CCC-GARCH model, or (iii) an exponential smoothing covariances estimator as in the RiskMetricsTM approach.Conditional mean and variance estimation, Filtered Historical Simulation, Functional Gradient Descent, Term structure; Multivariate CCC-GARCH models

    Bootstrapping the economy -- a non-parametric method of generating consistent future scenarios

    Get PDF
    The fortune and the risk of a business venture depends on the future course of the economy. There is a strong demand for economic forecasts and scenarios that can be applied to planning and modeling. While there is an ongoing debate on modeling economic scenarios, the bootstrapping (or resampling) approach presented here has several advantages. As a non-parametric method, it directly relies on past market behaviors rather than debatable assumptions on models and parameters. Simultaneous dependencies between economic variables are automatically captured. Some aspects of the bootstrapping method require additional modeling: choice and ransformation of the economic variables, arbitrage-free consistency, heavy tails of distributions, serial dependence, trends and mean reversion. Results of a complete economic scenario generator are presented, tested and discussed.economic scenario generator (ESG); asset-liability management (ALM); bootstrapping; resampling; simulation; Monte-Carlo simulation; non-parametric model; yield curve model

    Scenario Based Principal Component Value-at-Risk: an Application to Italian Banks' Interest Rate Risk Exposure

    Get PDF
    The paper develops a Value-at-Risk methodology to assess Italian banksÂ’ interest rate risk exposure. By using 5 years of daily data, the exposure is evaluated through a Principal Component VaR based on Monte Carlo simulation according to two different approaches (parametric and non-parametric). The main contribution of the paper is a methodology for modelling interest rate changes when underlying risk factors are skewed and heavy-tailed. The methodology is then implemented on a one year holding period in order to compare the results from those resulting from the Basel II standardized approach. We find that the risk measure proposed by Basel II gives an adequate description of risk, provided that duration parameters are changed to reflect market conditions. Finally, the methodology is used to perform a stress testing analysis.Interest rate risk, VAR, PCA, Non-normality, Non parametric methods
    • …
    corecore