183,378 research outputs found

    Prototyping Information Visualization in 3D City Models: a Model-based Approach

    Full text link
    When creating 3D city models, selecting relevant visualization techniques is a particularly difficult user interface design task. A first obstacle is that current geodata-oriented tools, e.g. ArcGIS, have limited 3D capabilities and limited sets of visualization techniques. Another important obstacle is the lack of unified description of information visualization techniques for 3D city models. If many techniques have been devised for different types of data or information (wind flows, air quality fields, historic or legal texts, etc.) they are generally described in articles, and not really formalized. In this paper we address the problem of visualizing information in (rich) 3D city models by presenting a model-based approach for the rapid prototyping of visualization techniques. We propose to represent visualization techniques as the composition of graph transformations. We show that these transformations can be specified with SPARQL construction operations over RDF graphs. These specifications can then be used in a prototype generator to produce 3D scenes that contain the 3D city model augmented with data represented using the desired technique.Comment: Proc. of 3DGeoInfo 2014 Conference, Dubai, November 201

    Analytical modelling in Dynamo

    Get PDF
    BIM is applied as modern database for civil engineering. Its recent development allows to preserve both structure geometrical and analytical information. The analytical model described in the paper is derived directly from BIM model of a structure automatically but in most cases it requires manual improvements before being sent to FEM software. Dynamo visual programming language was used to handle the analytical data. Authors developed a program which corrects faulty analytical model obtained from BIM geometry, thus providing better automation for preparing FEM model. Program logic is explained and test cases shown

    Improving Usability of Interactive Graphics Specification and Implementation with Picking Views and Inverse Transformations

    Get PDF
    Specifying and programming graphical interactions are difficult tasks, notably because designers have difficulties to express the dynamics of the interaction. This paper shows how the MDPC architecture improves the usability of the specification and the implementation of graphical interaction. The architecture is based on the use of picking views and inverse transforms from the graphics to the data. With three examples of graphical interaction, we show how to express them with the architecture, how to implement them, and how this improves programming usability. Moreover, we show that it enables implementing graphical interaction without a scene graph. This kind of code prevents from errors due to cache consistency management

    Declarative Ajax Web Applications through SQL++ on a Unified Application State

    Full text link
    Implementing even a conceptually simple web application requires an inordinate amount of time. FORWARD addresses three problems that reduce developer productivity: (a) Impedance mismatch across the multiple languages used at different tiers of the application architecture. (b) Distributed data access across the multiple data sources of the application (SQL database, user input of the browser page, session data in the application server, etc). (c) Asynchronous, incremental modification of the pages, as performed by Ajax actions. FORWARD belongs to a novel family of web application frameworks that attack impedance mismatch by offering a single unifying language. FORWARD's language is SQL++, a minimally extended SQL. FORWARD's architecture is based on two novel cornerstones: (a) A Unified Application State (UAS), which is a virtual database over the multiple data sources. The UAS is accessed via distributed SQL++ queries, therefore resolving the distributed data access problem. (b) Declarative page specifications, which treat the data displayed by pages as rendered SQL++ page queries. The resulting pages are automatically incrementally modified by FORWARD. User input on the page becomes part of the UAS. We show that SQL++ captures the semi-structured nature of web pages and subsumes the data models of two important data sources of the UAS: SQL databases and JavaScript components. We show that simple markup is sufficient for creating Ajax displays and for modeling user input on the page as UAS data sources. Finally, we discuss the page specification syntax and semantics that are needed in order to avoid race conditions and conflicts between the user input and the automated Ajax page modifications. FORWARD has been used in the development of eight commercial and academic applications. An alpha-release web-based IDE (itself built in FORWARD) enables development in the cloud.Comment: Proceedings of the 14th International Symposium on Database Programming Languages (DBPL 2013), August 30, 2013, Riva del Garda, Trento, Ital

    Spatial Aggregation: Theory and Applications

    Full text link
    Visual thinking plays an important role in scientific reasoning. Based on the research in automating diverse reasoning tasks about dynamical systems, nonlinear controllers, kinematic mechanisms, and fluid motion, we have identified a style of visual thinking, imagistic reasoning. Imagistic reasoning organizes computations around image-like, analogue representations so that perceptual and symbolic operations can be brought to bear to infer structure and behavior. Programs incorporating imagistic reasoning have been shown to perform at an expert level in domains that defy current analytic or numerical methods. We have developed a computational paradigm, spatial aggregation, to unify the description of a class of imagistic problem solvers. A program written in this paradigm has the following properties. It takes a continuous field and optional objective functions as input, and produces high-level descriptions of structure, behavior, or control actions. It computes a multi-layer of intermediate representations, called spatial aggregates, by forming equivalence classes and adjacency relations. It employs a small set of generic operators such as aggregation, classification, and localization to perform bidirectional mapping between the information-rich field and successively more abstract spatial aggregates. It uses a data structure, the neighborhood graph, as a common interface to modularize computations. To illustrate our theory, we describe the computational structure of three implemented problem solvers -- KAM, MAPS, and HIPAIR --- in terms of the spatial aggregation generic operators by mixing and matching a library of commonly used routines.Comment: See http://www.jair.org/ for any accompanying file

    An NMF solution for the Flowgraphs case at the TTC 2013

    Full text link
    Software systems are getting more and more complex. Model-driven engineering (MDE) offers ways to handle such increased complexity by lifting development to a higher level of abstraction. A key part in MDE are transformations that transform any given model into another. These transformations are used to generate all kinds of software artifacts from models. However, there is little consensus about the transformation tools. Thus, the Transformation Tool Contest (TTC) 2013 aims to compare different transformation engines. This is achieved through three different cases that have to be tackled. One of these cases is the Flowgraphs case. A solution has to transform a Java code model into a simplified version and has to derive control and data flow. This paper presents the solution for this case using NMF Transformations as transformation engine.Comment: In Proceedings TTC 2013, arXiv:1311.753
    corecore