163 research outputs found

    Efficient Sampling of Band-limited Signals from Sine Wave Crossings

    Get PDF
    This correspondence presents an efficient method for reconstructing a band-limited signal in the discrete domain from its crossings with a sine wave. The method makes it possible to design A/D converters that only deliver the crossing timings, which are then used to interpolate the input signal at arbitrary instants. Potentially, it may allow for reductions in power consumption and complexity in these converters. The reconstruction in the discrete domain is based on a recently-proposed modification of the Lagrange interpolator, which is readily implementable with linear complexity and efficiently, given that it re-uses known schemes for variable fractional-delay (VFD) filters. As a spin-off, the method allows one to perform spectral analysis from sine wave crossings with the complexity of the FFT. Finally, the results in the correspondence are validated in several numerical examples.Comment: To appear in the IEEE Transactions on Signal Processin

    Sinc interpolation of nonuniform samples

    Get PDF
    It is well known that a bandlimited signal can be uniquely recovered from nonuniformly spaced samples under certain conditions on the nonuniform grid and provided that the average sampling rate meets or exceeds the Nyquist rate. However, reconstruction of the continuous-time signal from nonuniform samples is typically more difficult to implement than from uniform samples. Motivated by the fact that sinc interpolation results in perfect reconstruction for uniform sampling, we develop a class of approximate reconstruction methods from nonuniform samples based on the use of time-invariant lowpass filtering, i.e., sinc interpolation. The methods discussed consist of four cases incorporated in a single framework. The case of sub-Nyquist sampling is also discussed and nonuniform sampling is shown as a possible approach to mitigating the impact of aliasing

    Regularized sampling of multiband signals

    Full text link
    This paper presents a regularized sampling method for multiband signals, that makes it possible to approach the Landau limit, while keeping the sensitivity to noise at a low level. The method is based on band-limited windowing, followed by trigonometric approximation in consecutive time intervals. The key point is that the trigonometric approximation "inherits" the multiband property, that is, its coefficients are formed by bursts of non-zero elements corresponding to the multiband components. It is shown that this method can be well combined with the recently proposed synchronous multi-rate sampling (SMRS) scheme, given that the resulting linear system is sparse and formed by ones and zeroes. The proposed method allows one to trade sampling efficiency for noise sensitivity, and is specially well suited for bounded signals with unbounded energy like those in communications, navigation, audio systems, etc. Besides, it is also applicable to finite energy signals and periodic band-limited signals (trigonometric polynomials). The paper includes a subspace method for blindly estimating the support of the multiband signal as well as its components, and the results are validated through several numerical examples.Comment: The title and introduction have changed. Submitted to the IEEE Transactions on Signal Processin

    Estimation of Time-Limited Channel Spectra From Nonuniform Samples

    Get PDF
    This paper deals with the estimation of a time-invariant channel spectrum from its own nonuniform samples, assuming there is a bound on the channel’s delay spread. Except for this last assumption, this is the basic estimation problem in systems providing channel spectral samples. However, as shown in the paper, the delay spread bound leads us to view the spectrum as a band-limited signal, rather than the Fourier transform of a tapped delay line (TDL). Using this alternative model, a linear estimator is presented that approximately minimizes the expected root-mean-square (RMS) error for a deterministic channel. Its main advantage over the TDL is that it takes into account the spectrum’s smoothness (time width), thus providing a performance improvement. The proposed estimator is compared numerically with the maximum likelihood (ML) estimator based on a TDL model in pilot-assisted channel estimation (PACE) for OFDM.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under Project TEC2011-28201-C02-02

    New iterative framework for frequency response mismatch correction in time-interleaved ADCs: Design and performance analysis

    Get PDF
    This paper proposes a new iterative framework for the correction of frequency response mismatch in time-interleaved analog-to-digital converters. Based on a general time-varying linear system model for the mismatch, we treat the reconstruction problem as a linear inverse problem and establish a flexible iterative framework for practical implementation. It encumbrances a number of efficient iterative correction algorithms and simplifies their design, implementation, and performance analysis. In particular, an efficient Gauss-Seidel iteration is studied in detail to illustrate how the correction problem can be solved iteratively and how the proposed structure can be efficiently implemented using Farrow-based variable digital filters with few general-purpose multipliers. We also study important issues, such as the sufficient convergence condition and reconstructed signal spectrum, derive new lower bound of signal-to-distortion-and-noise ratio in order to ensure stable operation, and predict the performance of the proposed structure. Furthermore, we propose an extended iterative structure, which is able to cope with systems involving more than one type of mismatches. Finally, the theoretical results and the effectiveness of the proposed approach are validated by means of computer simulations. © 2011 IEEE.published_or_final_versio

    Novel Digital Alias-Free Signal Processing Approaches to FIR Filtering Estimation

    Get PDF
    This thesis aims at developing a new methodology of filtering continuous-time bandlimited signals and piecewise-continuous signals from their discrete-time samples. Unlike the existing state-of-the-art filters, my filters are not adversely affected by aliasing, allowing the designers to flexibly select the sampling rates of the processed signal to reach the required accuracy of signal filtering rather than meeting stiff and often demanding constraints imposed by the classical theory of digital signal processing (DSP). The impact of this thesis is cost reduction of alias-free sampling, filtering and other digital processing blocks, particularly when the processed signals have sparse and unknown spectral support. Novel approaches are proposed which can mitigate the negative effects of aliasing, thanks to the use of nonuniform random/pseudorandom sampling and processing algorithms. As such, the proposed approaches belong to the family of digital alias-free signal processing (DASP). Namely, three main approaches are considered: total random (ToRa), stratified (StSa) and antithetical stratified (AnSt) random sampling techniques. First, I introduce a finite impulse response (FIR) filter estimator for each of the three considered techniques. In addition, a generalised estimator that encompasses the three filter estimators is also proposed. Then, statistical properties of all estimators are investigated to assess their quality. Properties such as expected value, bias, variance, convergence rate, and consistency are all inspected and unveiled. Moreover, closed-form mathematical expression is devised for the variance of each single estimator. Furthermore, quality assessment of the proposed estimators is examined in two main cases related to the smoothness status of the filter convolution’s integrand function, \u1d454(\u1d461,\u1d70f)∶=\u1d465(\u1d70f)ℎ(\u1d461−\u1d70f), and its first two derivatives. The first main case is continuous and differentiable functions \u1d454(\u1d461,\u1d70f), \u1d454′(\u1d461,\u1d70f), and \u1d454′′(\u1d461,\u1d70f). Whereas in the second main case, I cover all possible instances where some/all of such functions are piecewise-continuous and involving a finite number of bounded discontinuities. Primarily obtained results prove that all considered filter estimators are unbiassed and consistent. Hence, variances of the estimators converge to zero after certain number of sample points. However, the convergence rate depends on the selected estimator and which case of smoothness is being considered. In the first case (i.e. continuous \u1d454(\u1d461,\u1d70f) and its derivatives), ToRa, StSa and AnSt filter estimators converge uniformly at rates of \u1d441−1, \u1d441−3, and \u1d441−5 respectively, where 2\u1d441 is the total number of sample points. More interestingly, in the second main case, the convergence rates of StSa and AnSt estimators are maintained even if there are some discontinuities in the first-order derivative (FOD) with respect to \u1d70f of \u1d454(\u1d461,\u1d70f) (for StSa estimator) or in the second-order derivative (SOD) with respect to \u1d70f of \u1d454(\u1d461,\u1d70f) (for AnSt). Whereas these rates drop to \u1d441−2 and \u1d441−4 (for StSa and AnSt, respectively) if the zero-order derivative (ZOD) (for StSa) and FOD (for AnSt) are piecewise-continuous. Finally, if the ZOD of \u1d454(\u1d461,\u1d70f) is piecewise-continuous, then the uniform convergence rate of the AnSt estimator further drops to \u1d441−2. For practical reasons, I also introduce the utilisation of the three estimators in a special situation where the input signal is pseudorandomly sampled from otherwise uniform and dense grid. An FIR filter model with an oversampled finite-duration impulse response, timely aligned with the grid, is proposed and meant to be stored in a lookup table of the implemented filter’s memory to save processing time. Then, a synchronised convolution sum operation is conducted to estimate the filter output. Finally, a new unequally spaced Lagrange interpolation-based rule is proposed. The so-called composite 3-nonuniform-sample (C3NS) rule is employed to estimate area under the curve (AUC) of an integrand function rather than the simple Rectangular rule. I then carry out comparisons for the convergence rates of different estimators based on the two interpolation rules. The proposed C3NS estimator outperforms other Rectangular rule estimators on the expense of higher computational complexity. Of course, this extra cost could only be justifiable for some specific applications where more accurate estimation is required

    A Novel Iterative Structure for Online Calibration of M-Channel Time-Interleaved ADCs

    Get PDF
    published_or_final_versio

    Sampling and quantization for optimal reconstruction

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 161-167).This thesis develops several approaches for signal sampling and reconstruction given different assumptions about the signal, the type of errors that occur, and the information available about the signal. The thesis first considers the effects of quantization in the environment of interleaved, oversampled multi-channel measurements with the potential of different quantization step size in each channel and varied timing offsets between channels. Considering sampling together with quantization in the digital representation of the continuous-time signal is shown to be advantageous. With uniform quantization and equal quantizer step size in each channel, the effective overall signal-to-noise ratio in the reconstructed output is shown to be maximized when the timing offsets between channels are identical, resulting in uniform sampling when the channels are interleaved. However, with different levels of accuracy in each channel, the choice of identical timing offsets between channels is in general not optimal, with better results often achievable with varied timing offsets corresponding to recurrent nonuniform sampling when the channels are interleaved. Similarly, it is shown that with varied timing offsets, equal quantization step size in each channel is in general not optimal, and a higher signal-to-quantization-noise ratio is often achievable with different levels of accuracy in the quantizers in different channels. Another aspect of this thesis considers nonuniform sampling in which the sampling grid is modeled as a perturbation of a uniform grid. Perfect reconstruction from these nonuniform samples is in general computationally difficult; as an alternative, this work presents a class of approximate reconstruction methods based on the use of time-invariant lowpass filtering, i.e., sinc interpolation. When the average sampling rate is less than the Nyquist rate, i.e., in sub-Nyquist sampling, the artifacts produced when these reconstruction methods are applied to the nonuniform samples can be preferable in certain applications to the aliasing artifacts, which occur in uniform sampling. The thesis also explores various approaches to avoiding aliasing in sampling. These approaches exploit additional information about the signal apart from its bandwidth and suggest using alternative pre-processing instead of the traditional linear time-invariant anti-aliasing filtering prior to sampling.by Shay Maymon.Ph.D
    • …
    corecore