285,501 research outputs found

    Deciding subset relationship of co-inductively defined set constants

    Get PDF
    Static analysis of different non-strict functional programming languages makes use of set constants like Top, Inf, and Bot denoting all expressions, all lists without a last Nil as tail, and all non-terminating programs, respectively. We use a set language that permits union, constructors and recursive definition of set constants with a greatest fixpoint semantics. This paper proves decidability, in particular EXPTIMEcompleteness, of subset relationship of co-inductively defined sets by using algorithms and results from tree automata. This shows decidability of the test for set inclusion, which is required by certain strictness analysis algorithms in lazy functional programming languages

    Systematic formulation of non-functional characteristics of software

    Get PDF
    This paper presents NoFun, a notation aimed at dealing with non-functional aspects of software systems at the product level in the component programming framework. NoFun can be used to define hierarchies of non-functional attributes, which can be bound to individual software components, libraries of components or (sets of) software systems. Non-functional attributes can be defined in several ways, being possible to choose a particular definition in a concrete context. Also, NoFun allows to state the values of the attributes in component implementations, and to formulate non-functional requirements over component implementations. The notation is complemented with an algorithm able to select the best implementation of components (with respect to their non-functional characteristics) in their context of use.Peer ReviewedPostprint (published version

    SMT Solving for Functional Programming over Infinite Structures

    Get PDF
    We develop a simple functional programming language aimed at manipulating infinite, but first-order definable structures, such as the countably infinite clique graph or the set of all intervals with rational endpoints. Internally, such sets are represented by logical formulas that define them, and an external satisfiability modulo theories (SMT) solver is regularly run by the interpreter to check their basic properties. The language is implemented as a Haskell module.Comment: In Proceedings MSFP 2016, arXiv:1604.0038

    The earlier the better: a theory of timed actor interfaces

    Get PDF
    Programming embedded and cyber-physical systems requires attention not only to functional behavior and correctness, but also to non-functional aspects and specifically timing and performance. A structured, compositional, model-based approach based on stepwise refinement and abstraction techniques can support the development process, increase its quality and reduce development time through automation of synthesis, analysis or verification. Toward this, we introduce a theory of timed actors whose notion of refinement is based on the principle of worst-case design that permeates the world of performance-critical systems. This is in contrast with the classical behavioral and functional refinements based on restricting sets of behaviors. Our refinement allows time-deterministic abstractions to be made of time-non-deterministic systems, improving efficiency and reducing complexity of formal analysis. We show how our theory relates to, and can be used to reconcile existing time and performance models and their established theories

    Constructing applicative functors

    Get PDF
    Applicative functors define an interface to computation that is more general, and correspondingly weaker, than that of monads. First used in parser libraries, they are now seeing a wide range of applications. This paper sets out to explore the space of non-monadic applicative functors useful in programming. We work with a generalization, lax monoidal functors, and consider several methods of constructing useful functors of this type, just as transformers are used to construct computational monads. For example, coends, familiar to functional programmers as existential types, yield a range of useful applicative functors, including left Kan extensions. Other constructions are final fixed points, a limited sum construction, and a generalization of the semi-direct product of monoids. Implementations in Haskell are included where possible

    Adding plural arguments to Curry programs

    Get PDF
    Functional logic languages combine lazy (demand-driven) evaluation strategies from functional programming with non-deterministic computations from logic programming. To provide a strategy-independent semantics, most languages are based on the call-time choice semantics where parameters are passed as values. From an implementation point of view, the call-time choice semantics fits well with sharing performed by lazy languages. On the other hand, there are also situations where it is intended to pass non-deterministic arguments as sets of values in order to exploit the power of non-deterministic programming. This alternative parameter passing model is known under the name "plural" arguments. In this paper, we show how both mechanisms can be integrated in a single language. In particular, we present a novel technique to implement plural arguments in a call-time choice language so that existing implementations of contemporary functional logic languages can be easily re-used to implement plural parameter passing

    The earlier the better: a theory of timed actor interfaces

    Get PDF
    Programming embedded and cyber-physical systems requires attention not only to functional behavior and correctness, but also to non-functional aspects and specifically timing and performance constraints. A structured, compositional, model-based approach based on stepwise refinement and abstraction techniques can support the development process, increase its quality and reduce development time through automation of synthesis, analysis or verification. For this purpose, we introduce in this paper a general theory of timed actor interfaces. Our theory supports a notion of refinement that is based on the principle of worst-case design that permeates the world of performance-critical systems. This is in contrast with the classical behavioral and functional refinements based on restricting or enlarging sets of behaviors. An important feature of our refinement is that it allows time-deterministic abstractions to be made of time-non-deterministic systems, improving efficiency and reducing complexity of formal analysis. We also show how our theory relates to, and can be used to reconcile a number of existing time and performance models and how their established theories can be exploited to represent and analyze interface specifications and refinement steps.\u
    corecore