2,082 research outputs found

    Visual and Electrosensory Circuits of the Diencephalon in Mormyrids

    Get PDF
    Mormyrids are one of two groups of teleost fishes known to have evolved electroreception, and the concomitant neuroanatomical changes have confounded the interpretation of many of their brain areas in a comparative context, e.g., the diencephalon, where different sensory systems are processed and relayed. Recently, cerebellar and retinal connections of the diencephalon in mormyrids were reported. The present study reports on the telencephalic and tectal connections, specifically in Gnathonemus petersii, as these data are critical for an accurate interpretation of diencephalic nuclei in teleosts. Injections of horseradish peroxidase into the telencephalon retrogradely labeled neurons ipsilaterally in various thalamic, preglomerular, and tuberal nuclei, the nucleus of the locus coeruleus (also contralaterally), the superior raphe, and portions of the nucleus lateralis valvulae. Telencephalic injections anterogradely labeled the dorsal preglomerular and the dorsal tegmental nuclei bilaterally. Injections into the optic tectum retrogradely labeled neurons bilaterally in the central zone of area dorsalis telencephali and ipsilaterally in the torus longitudinalis, various thalamic, pretectal, and tegmental nuclei, some nuclei in the torus semicircularis, the nucleus of the locus coeruleus, the nucleus isthmi and the superior reticular formation, basal cells in the ipsilateral valvula cerebelli, and eurydendroid cells in the contralateral lobe C4 of the corpus cerebelli. Weaker contralateral projections were also observed to arise from the ventromedial thalamus and various pretectal and tegmental nuclei, and from the locus coeruleus and superior reticular formation. Tectal injections anterogradely labeled various pretectal nuclei bilaterally, as well as ipsilaterally the dorsal preglomerular and dorsal posterior thalamic nuclei, some nuclei in the torus semicircularis, the dorsal tegmental nucleus, nucleus isthmi, and, again bilaterally, the superior reticular formation. A comparison of retinal, cerebellar, tectal, and telencephalic connections in Gnathonemus with those in nonelectrosensory teleosts reveals several points: (1 the visual area of the diencephalon is highly reduced in Gnathonemus, (2) the interconnections between the preglomerular area and telencephalon in Gnathonemus are unusually well developed compared to those in other teleosts, and (3) two of the three corpopetal diencephalic nuclei are homologues of the central and dorsal periventricular pretectum in other teleosts. The third is a subdivision of the preglomerular area, rather than an accessory optic or pretectal nucleus, and is related to electroreception. The preglomerulo-cerebellar connections in Gnathonemus are therefore interpreted as uniquely derived characters for mormyrids

    Increased mRNA Expression for the α\u3csub\u3e1\u3c/sub\u3e Subunit of the GABA\u3csub\u3eA\u3c/sub\u3e Receptor Following Nitrous Oxide Exposure in Mice

    Get PDF
    The mechanisms by which nitrous oxide (N2O) produces physical dependence and withdrawal seizures are not well understood, but both N2O and ethanol exert some of their effects via the GABAA receptor and several lines of evidence indicate that withdrawal from N2O and ethanol may be produced through similar mechanisms. Expression levels of mRNA transcripts encoding several GABAA receptor subunits change with chronic ethanol exposure and, therefore, we hypothesized that N2O exposure would produce changes in mRNA expression for the α1 subunit. Male, Swiss–Webster mice, 10–12 weeks of age, were exposed for 48 h to either room air or a 75%:25% N2O:O2 environment. Brains were sectioned and mRNA for the a subunit was detected by in situ hybridization using an 35S-labelled cRNA probe. N2O exposure produced a significant increase in expression levels of the α1 subunit mRNA in the cingulate cortex, the CA1/2 region of the hippocampus, the dentate gyrus, the subiculum, the medial septum, and the ventral tegmental area. These results lend support to the hypothesis that N2O effects are produced, at least in part, through the GABAA receptor and that N2O produces these effects through actions in the cingulate cortex, hippocampus, ventral tegmental area and medial septum. These results are also further evidence that ethanol and N2O produce dependence and withdrawal through common mechanisms

    Simultaneous effects on parvalbumin-positive interneuron and dopaminergic system development in a transgenic rat model for sporadic schizophrenia

    Get PDF
    To date, unequivocal neuroanatomical features have been demonstrated neither for sporadic nor for familial schizophrenia. Here, we investigated the neuroanatomical changes in a transgenic rat model for a subset of sporadic chronic mental illness (CMI), which modestly overexpresses human full-length, non-mutant Disrupted-in-Schizophrenia 1 (DISC1), and for which aberrant dopamine homeostasis consistent with some schizophrenia phenotypes has previously been reported. Neuroanatomical analysis revealed a reduced density of dopaminergic neurons in the substantia nigra and reduced dopaminergic fibres in the striatum. Parvalbumin-positive interneuron occurrence in the somatosensory cortex was shifted from layers II/III to V/VI, and the number of calbindin-positive interneurons was slightly decreased. Reduced corpus callosum thickness confirmed trend-level observations from in vivo MRI and voxel-wise tensor based morphometry. These neuroanatomical changes help explain functional phenotypes of this animal model, some of which resemble changes observed in human schizophrenia post mortem brain tissues. Our findings also demonstrate how a single molecular factor, DISC1 overexpression or misassembly, can account for a variety of seemingly unrelated morphological phenotypes and thus provides a possible unifying explanation for similar findings observed in sporadic schizophrenia patients. Our anatomical investigation of a defined model for sporadic mental illness enables a clearer definition of neuroanatomical changes associated with subsets of human sporadic schizophrenia

    Central Control Of Body Fat And Thermoregulation Through Shared And Separate Sympathetic Circuitries And Sensory Feedback

    Get PDF
    More than 30% of the population suffers from obesity, which increases the risk of death and secondary health problems. Body fat [white adipose tissue (WAT) and brown adipose tissue (BAT)] are innervated and regulated by the sympathetic nervous system (SNS). WAT stores energy, while BAT generates heat for thermoregulation. Fat also has sensory innervations, but the roles of sensory nerves are still being elucidated. Hence, understanding the neuroanatomy of the SNS innervations of fat and the neural regulation of fat metabolism will be valuable for advancing obesity treatment. Using trans-synaptic tract tracers with unique fluorescent proteins, we defined and compared the SNS innervations of visceral fat [mesenteric WAT (MWAT)] and subcutaneous fat [inguinal WAT (IWAT)] and of IWAT and interscapular BAT (IBAT) in Siberian hamsters. MWAT and IWAT have moderately shared SNS innervations within the hindbrain, but separate SNS innervations in rostral regions. In contrast, IWAT and IBAT have relatively separate SNS circuitries throughout the brain yet some overlap in SNS nuclei known to regulate thermogenesis. We tested for the presence of functional coordination between IWAT and IBAT defined by overlap in IWAT SNS and IBAT SNS innervations. When IBAT function was impaired by SNS denervation, IWAT SNS drive, thermogenic activity, and beige adipocyte recruitment increased in cold exposed hamsters likely through coordination with IWAT SNS pathways. Conversely, we found that only SNS drive to IWAT increased during acute food deprivation suggesting that populations of SNS neurons singly innervating each fat depot may contribute to differential SNS drive to fat. Lastly, we demonstrated that IWAT sensory nerves mediate the functional coordination between IWAT and IBAT and the regulation of SNS drive to fat. The absence of IWAT sensory feedback via sensory denervation differentially decreased SNS drive to IBAT and IWAT itself, but not to MWAT, retroperitoneal WAT, and epididymal WAT in cold exposed hamsters. Collectively, the studies in this dissertation provide neuroanatomical evidence of separate and shared SNS brain sites likely receiving sensory signaling and regulating SNS drive to fat, and direct evidence of the roles of SNS and sensory nerves innervating fat to energetic homeostasis and thermoregulation

    Anatomy of the sleep-wake systems in four species of Equid

    Get PDF
    A thesis submitted to the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Medicine. Johannesburg, 2017Within the order Perissodactyla the physiological measurable parameters of sleep have been investigated in a number of species, however no studies exist that describe the neuronal organisation and morphology of the sleep-wake systems in any of its members. The central aim of this dissertation is to address this gap by providing the first complete description of the somnogenic systems in the basal forebrain, diencephalon, midbrain and pons of four equid species; the donkey, horse, plains and mountain zebra. By means of standard immunohistochemical techniques the cholinergic, catecholaminergic, serotonergic, orexinergic and GABAergic systems were identified and qualitatively described in each of the four species. The results revealed that, for the most part, the nuclear organisation and morphology of the sleepwake systems did not differ between the species examined, and displayed the typical mammalian organisational plan. However, two novel findings were noted: 1) the presence of tyrosine hydroxylase neurons in the predominantly GABAergic thalamic reticular nucleus; 2) the presence of a medial cluster of parvocellular orexinergic neurons within the hypothalamus. It is proposed that the population of tyrosine hydroxylase neurons in the thalamic reticular nucleus likely play a role in postural maintenance during standing rapid eye movement sleep and potentially contribute to memory consolidation in mammals with short sleep times. Additionally, the parvocellular cluster of orexin neurons is hypothesised to balance short sleep time and appetite drive in larger animals with high-energy demands and a low trophic status. The data produced from this dissertation extends the pre-existing phylogenetic database and offers further opportunity for reliable comparisons across mammals towards a more complete definition of the phenomenon of sleep.LG201
    • …
    corecore