14,786 research outputs found

    Functional principal components analysis via penalized rank one approximation

    Get PDF
    Two existing approaches to functional principal components analysis (FPCA) are due to Rice and Silverman (1991) and Silverman (1996), both based on maximizing variance but introducing penalization in different ways. In this article we propose an alternative approach to FPCA using penalized rank one approximation to the data matrix. Our contributions are four-fold: (1) by considering invariance under scale transformation of the measurements, the new formulation sheds light on how regularization should be performed for FPCA and suggests an efficient power algorithm for computation; (2) it naturally incorporates spline smoothing of discretized functional data; (3) the connection with smoothing splines also facilitates construction of cross-validation or generalized cross-validation criteria for smoothing parameter selection that allows efficient computation; (4) different smoothing parameters are permitted for different FPCs. The methodology is illustrated with a real data example and a simulation.Comment: Published in at http://dx.doi.org/10.1214/08-EJS218 the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Conditional Transformation Models

    Full text link
    The ultimate goal of regression analysis is to obtain information about the conditional distribution of a response given a set of explanatory variables. This goal is, however, seldom achieved because most established regression models only estimate the conditional mean as a function of the explanatory variables and assume that higher moments are not affected by the regressors. The underlying reason for such a restriction is the assumption of additivity of signal and noise. We propose to relax this common assumption in the framework of transformation models. The novel class of semiparametric regression models proposed herein allows transformation functions to depend on explanatory variables. These transformation functions are estimated by regularised optimisation of scoring rules for probabilistic forecasts, e.g. the continuous ranked probability score. The corresponding estimated conditional distribution functions are consistent. Conditional transformation models are potentially useful for describing possible heteroscedasticity, comparing spatially varying distributions, identifying extreme events, deriving prediction intervals and selecting variables beyond mean regression effects. An empirical investigation based on a heteroscedastic varying coefficient simulation model demonstrates that semiparametric estimation of conditional distribution functions can be more beneficial than kernel-based non-parametric approaches or parametric generalised additive models for location, scale and shape

    Nonlinear association structures in flexible Bayesian additive joint models

    Full text link
    Joint models of longitudinal and survival data have become an important tool for modeling associations between longitudinal biomarkers and event processes. The association between marker and log-hazard is assumed to be linear in existing shared random effects models, with this assumption usually remaining unchecked. We present an extended framework of flexible additive joint models that allows the estimation of nonlinear, covariate specific associations by making use of Bayesian P-splines. Our joint models are estimated in a Bayesian framework using structured additive predictors for all model components, allowing for great flexibility in the specification of smooth nonlinear, time-varying and random effects terms for longitudinal submodel, survival submodel and their association. The ability to capture truly linear and nonlinear associations is assessed in simulations and illustrated on the widely studied biomedical data on the rare fatal liver disease primary biliary cirrhosis. All methods are implemented in the R package bamlss to facilitate the application of this flexible joint model in practice.Comment: Changes to initial commit: minor language editing, additional information in Section 4, formatting in Supplementary Informatio

    Boosted Beta regression.

    Get PDF
    Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1). Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures

    A Unified Framework of Constrained Regression

    Full text link
    Generalized additive models (GAMs) play an important role in modeling and understanding complex relationships in modern applied statistics. They allow for flexible, data-driven estimation of covariate effects. Yet researchers often have a priori knowledge of certain effects, which might be monotonic or periodic (cyclic) or should fulfill boundary conditions. We propose a unified framework to incorporate these constraints for both univariate and bivariate effect estimates and for varying coefficients. As the framework is based on component-wise boosting methods, variables can be selected intrinsically, and effects can be estimated for a wide range of different distributional assumptions. Bootstrap confidence intervals for the effect estimates are derived to assess the models. We present three case studies from environmental sciences to illustrate the proposed seamless modeling framework. All discussed constrained effect estimates are implemented in the comprehensive R package mboost for model-based boosting.Comment: This is a preliminary version of the manuscript. The final publication is available at http://link.springer.com/article/10.1007/s11222-014-9520-

    Representation of Functional Data in Neural Networks

    Get PDF
    Functional Data Analysis (FDA) is an extension of traditional data analysis to functional data, for example spectra, temporal series, spatio-temporal images, gesture recognition data, etc. Functional data are rarely known in practice; usually a regular or irregular sampling is known. For this reason, some processing is needed in order to benefit from the smooth character of functional data in the analysis methods. This paper shows how to extend the Radial-Basis Function Networks (RBFN) and Multi-Layer Perceptron (MLP) models to functional data inputs, in particular when the latter are known through lists of input-output pairs. Various possibilities for functional processing are discussed, including the projection on smooth bases, Functional Principal Component Analysis, functional centering and reduction, and the use of differential operators. It is shown how to incorporate these functional processing into the RBFN and MLP models. The functional approach is illustrated on a benchmark of spectrometric data analysis.Comment: Also available online from: http://www.sciencedirect.com/science/journal/0925231

    Boosting Functional Response Models for Location, Scale and Shape with an Application to Bacterial Competition

    Get PDF
    We extend Generalized Additive Models for Location, Scale, and Shape (GAMLSS) to regression with functional response. This allows us to simultaneously model point-wise mean curves, variances and other distributional parameters of the response in dependence of various scalar and functional covariate effects. In addition, the scope of distributions is extended beyond exponential families. The model is fitted via gradient boosting, which offers inherent model selection and is shown to be suitable for both complex model structures and highly auto-correlated response curves. This enables us to analyze bacterial growth in \textit{Escherichia coli} in a complex interaction scenario, fruitfully extending usual growth models.Comment: bootstrap confidence interval type uncertainty bounds added; minor changes in formulation
    • …
    corecore