14 research outputs found

    Semantics in a frege structure

    Get PDF

    Nominalization, predication and type containment

    Get PDF

    Decidable Reasoning in Terminological Knowledge Representation Systems

    Get PDF
    Terminological knowledge representation systems (TKRSs) are tools for designing and using knowledge bases that make use of terminological languages (or concept languages). We analyze from a theoretical point of view a TKRS whose capabilities go beyond the ones of presently available TKRSs. The new features studied, often required in practical applications, can be summarized in three main points. First, we consider a highly expressive terminological language, called ALCNR, including general complements of concepts, number restrictions and role conjunction. Second, we allow to express inclusion statements between general concepts, and terminological cycles as a particular case. Third, we prove the decidability of a number of desirable TKRS-deduction services (like satisfiability, subsumption and instance checking) through a sound, complete and terminating calculus for reasoning in ALCNR-knowledge bases. Our calculus extends the general technique of constraint systems. As a byproduct of the proof, we get also the result that inclusion statements in ALCNR can be simulated by terminological cycles, if descriptive semantics is adopted.Comment: See http://www.jair.org/ for any accompanying file

    Set theory and nominalisation, part 2

    Get PDF

    Representing logics in type theory

    Get PDF

    Second order arithmetic and related topics

    Get PDF

    Framework for binding operators

    Get PDF

    Metalevel and reflexive extension in mechanical theorem proving

    Get PDF
    In spite of many years of research into mechanical assistance for mathematics it is still much more difficult to construct a proof on a machine than on paper. Of course this is partly because, unlike a proof on paper, a machine checked proof must be formal in the strictest sense of that word, but it is also because usually the ways of going about building proofs on a machine are limited compared to what a mathematician is used to. This thesis looks at some possible extensions to the range of tools available on a machine that might lend a user more flexibility in proving theorems, complementing whatever is already available.In particular, it examines what is possible in a framework theorem prover. Such a system, if it is configured to prove theorems in a particular logic T, must have a formal description of the proof theory of T written in the framework theory F of the system. So it should be possible to use whatever facilities are available in F not only to prove theorems of T, but also theorems about T that can then be used in their turn to aid the user in building theorems of T.The thesis is divided into three parts. The first describes the theory FSâ‚€, which has been suggested by Feferman as a candidate for a framework theory suitable for doing meta-theory. The second describes some experiments with FSâ‚€, proving meta-theorems. The third describes an experiment in extending the theory PRA, declared in FSâ‚€, with a reflection facility.More precisely, in the second section three theories are formalised: propositional logic, sorted predicate logic, and the lambda calculus (with a deBruijn style binding). For the first two the deduction theorem and the prenex normal form theorem are respectively proven. For the third, a relational definition of beta-reduction is replaced with an explicit function.In the third section, a method is proposed for avoiding the work involved in building a full Godel style proof predicate for a theory. It is suggested that the language be extended with quotation and substitution facilities directly, instead of providing them as definitional extensions. With this, it is possible to exploit an observation of Solovay's that the Lob derivability conditions are sufficient to capture the schematic behaviour of a proof predicate. Combining this with a reflection schema is enough to produce a non-conservative extension of PRA, and this is demonstrated by some experiments

    Coherence and transitivity in coercive subtyping

    Get PDF
    The aim of this thesis is to study coherence and transitivity in coercive subtyping. Among other things, coherence and transitivity are key aspects for a coercive subtyping system to be consistent and for it to be implemented in a correct way. The thesis consists of three major parts. First, I prove that, for the subtyping rules of some parameterised inductive data types, coherence holds and the normal transitivity rule is admissible. Second, the notion of weak transitivity is introduced. The subtyping rules of a large class of parameterised inductive data types are suitable for weak transitivity, but not compatible with the normal transitivity rule. Third, I present a new formulation of coercive subtyping in order to combine incoherent coercions for the type of dependent pairs. There are two subtyping relations in the system and hence a further understanding of coherence and transitivity is needed. This thesis has the first case study of combining incoherent coercions in a single system. The thesis provides a clearer understanding of the subtyping rules for parameterised inductive data types and explains why the normal transitivity rule is not admissible for some natural subtyping rules. It also demonstrates that coherence and transitivity at type level can sometimes be very difficult issues in coercive subtyping. Besides providing theoretical understanding, the thesis also gives algorithms for implementing the subtyping rules for parameterised inductive data types
    corecore