356 research outputs found

    FMRI Study of Effects of Sleep Deprivation on Attentional Capacity

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    The Effects of Two Types of Sleep Deprivation on Visual Working Memory Capacity and Filtering Efficiency

    Get PDF
    Sleep deprivation has adverse consequences for a variety of cognitive functions. The exact effects of sleep deprivation, though, are dependent upon the cognitive process examined. Within working memory, for example, some component processes are more vulnerable to sleep deprivation than others. Additionally, the differential impacts on cognition of different types of sleep deprivation have not been well studied. The aim of this study was to examine the effects of one night of total sleep deprivation and 4 nights of partial sleep deprivation (4 hours in bed/night) on two components of visual working memory: capacity and filtering efficiency. Forty-four healthy young adults were randomly assigned to one of the two sleep deprivation conditions. All participants were studied: 1) in a well-rested condition (following 6 nights of 9 hours in bed/night); and 2) following sleep deprivation, in a counter-balanced order. Visual working memory testing consisted of two related tasks. The first measured visual working memory capacity and the second measured the ability to ignore distractor stimuli in a visual scene (filtering efficiency). Results showed neither type of sleep deprivation reduced visual working memory capacity. Partial sleep deprivation also generally did not change filtering efficiency. Total sleep deprivation, on the other hand, did impair performance in the filtering task. These results suggest components of visual working memory are differentially vulnerable to the effects of sleep deprivation, and different types of sleep deprivation impact visual working memory to different degrees. Such findings have implications for operational settings where individuals may need to perform with inadequate sleep and whose jobs involve receiving an array of visual information and discriminating the relevant from the irrelevant prior to making decisions or taking actions (e.g., baggage screeners, air traffic controllers, military personnel, health care providers)

    Visual Attention-Related Processing: Perspectives from Ageing, Cognitive Decline and Dementia

    Get PDF
    Visual attention is essential for environmental interactions, but our ability to respond to stimuli gradually declines across the lifespan, and such deficits are even more pronounced in various states of cognitive impairment. Examining the integrity of related components, from elements of attention capture to executive control, will improve our understanding of related declines by helping to explain behavioural and neural effects, which will ultimately contribute towards our knowledge of the extent of dysfunctional attention processes and their impact upon everyday life. Accordingly, this Special Issue represents a body of literature that fundamentally advances insights into visual attention processing, featuring studies spanning healthy ageing, mild cognitive impairment, and dementi

    Cognition and Brain Function in Schizotypy: A Selective Review

    Get PDF
    Schizotypy refers to a set of personality traits thought to reflect the subclinical expression of the signs and symptoms of schizophrenia. Here, we review the cognitive and brain functional profile associated with high questionnaire scores in schizotypy. We discuss empirical evidence from the domains of perception, attention, memory, imagery and representation, language, and motor control. Perceptual deficits occur early and across various modalities. While the neural mechanisms underlying visual impairments may be linked to magnocellular dysfunction, further effects may be seen downstream in higher cognitive functions. Cognitive deficits are observed in inhibitory control, selective and sustained attention, incidental learning, and memory. In concordance with the cognitive nature of many of the aberrations of schizotypy, higher levels of schizotypy are associated with enhanced vividness and better performance on tasks of mental rotation. Language deficits seem most pronounced in higher-level processes. Finally, higher levels of schizotypy are associated with reduced performance on oculomotor tasks, resembling the impairments seen in schizophrenia. Some of these deficits are accompanied by reduced brain activation, akin to the pattern of hypoactivations in schizophrenia spectrum individuals. We conclude that schizotypy is a construct with apparent phenomenological overlap with schizophrenia and stable interindividual differences that covary with performance on a wide range of perceptual, cognitive, and motor tasks known to be impaired in schizophrenia. The importance of these findings lies not only in providing a fine-grained neurocognitive characterization of a personality constellation known to be associated with real-life impairments, but also in generating hypotheses concerning the aetiology of schizophreni

    Psychosocial stress affects the acquisition of cerebellar-dependent sensorimotor adaptation

    Get PDF
    Despite being overlooked in theoretical models of stress-related disorders, differences in cerebellar structure and function are consistently reported in studies of individuals exposed to current and early-life stressors. However, the mediating processes through which stress impacts upon cerebellar function are currently unknown. The aim of the current experiment was to test the effects of experimentally-induced acute stress on cerebellar functioning, using a classic, forward saccadic adaptation paradigm in healthy, young men and women. Stress induction was achieved by employing the Montreal Imaging Stress Task (MIST), a task employing mental arithmetic and negative social feedback to generate significant physiological and endocrine stress responses. Saccadic adaptation was elicited using the double-step target paradigm. In the experiment, 48 participants matched for gender and age were exposed to either a stress (n = 25) or a control (n = 23) condition. Saliva for cortisol analysis was collected before, immediately after, and 10, and 30 min after the MIST. Saccadic adaptation was assessed approximately 10 min after stress induction, when cortisol levels peaked. Participants in the stress group reported significantly more stress symptoms and exhibited greater total cortisol output compared to controls. The stress manipulation was associated with slower learning rates in the stress group, while control participants acquired adaptation faster. Learning rates were negatively associated with cortisol output and mood disturbance. Results suggest that experimentally-induced stress slowed acquisition of cerebellar-dependent saccadic adaptation, related to increases in cortisol output. These ‘proof-of-principle’ data demonstrate that stress modulates cerebellar-related functions

    Sleep and Emotion Processing in Individuals with Insomnia Symptoms and Good Sleepers

    Get PDF
    Despite complaints of deficits in waking socioemotional functioning by individuals with insomnia, only a few studies have investigated waking emotion processing performance in this group. Additionally, the role of sleep in socioemotional processing has not been investigated using quantitative measures of sleep. The thesis investigated sleep and behavioural processing of emotionally expressive faces in individuals with insomnia symptoms (n=14) compared to healthy, good sleepers (n=15). The primary aim was to investigate the degree to which sleep predicted emotion processing. Participants completed two nights of at-home polysomnography-recorded sleep, and sleep diaries, which was followed by an afternoon of in-lab performance testing on tasks measuring processing of emotional facial expressions with an emotional Stroop task and a face categorization and intensity rating task. The insomnia group reported less total sleep time on their diary but no other differences in subjective or objective sleep were observed. No behavioural differences in emotion processing were observed overall. Post-hoc analysis of the individuals with insomnia symptoms that had a poor night of sleep on the night prior to performance assessment (n=8) revealed that a poor night of sleep in insomnia was associated with reduced time in Stage 2, REM and NREM sleep, and, there was trending support for elevated Sigma and Beta activity throughout the night as well as performance deficits for identifying emotional face expressions. For individuals with insomnia symptoms, greater levels of Beta EEG activity throughout sleep was associated with greater intensity ratings of happy, fearful, and sad faces. In conclusion, the thesis identified that the hyperarousal phenomenon in insomnia was related to altered waking salience assessments and gives promise for a new stream of research that investigates the relationship between hyperarousal in sleep and waking emotion functioning in insomnia

    Resisting Sleep Pressure:Impact on Resting State Functional Network Connectivity

    Get PDF
    In today's 24/7 society, sleep restriction is a common phenomenon which leads to increased levels of sleep pressure in daily life. However, the magnitude and extent of impairment of brain functioning due to increased sleep pressure is still not completely understood. Resting state network (RSN) analyses have become increasingly popular because they allow us to investigate brain activity patterns in the absence of a specific task and to identify changes under different levels of vigilance (e.g. due to increased sleep pressure). RSNs are commonly derived from BOLD fMRI signals but studies progressively also employ cerebral blood flow (CBF) signals. To investigate the impact of sleep pressure on RSNs, we examined RSNs of participants under high (19 h awake) and normal (10 h awake) sleep pressure with three imaging modalities (arterial spin labeling, BOLD, pseudo BOLD) while providing confirmation of vigilance states in most conditions. We demonstrated that CBF and pseudo BOLD signals (measured with arterial spin labeling) are suited to derive independent component analysis based RSNs. The spatial map differences of these RSNs were rather small, suggesting a strong biological substrate underlying these networks. Interestingly, increased sleep pressure, namely longer time awake, specifically changed the functional network connectivity (FNC) between RSNs. In summary, all FNCs of the default mode network with any other network or component showed increasing effects as a function of increased 'time awake'. All other FNCs became more anti-correlated with increased 'time awake'. The sensorimotor networks were the only ones who showed a within network change of FNC, namely decreased connectivity as function of 'time awake'. These specific changes of FNC could reflect both compensatory mechanisms aiming to fight sleep as well as a first reduction of consciousness while becoming drowsy. We think that the specific changes observed in functional network connectivity could imply an impairment of information transfer between the affected RSNs
    corecore