49,889 research outputs found

    Statistical properties of the method of regularization with periodic Gaussian reproducing kernel

    Get PDF
    The method of regularization with the Gaussian reproducing kernel is popular in the machine learning literature and successful in many practical applications. In this paper we consider the periodic version of the Gaussian kernel regularization. We show in the white noise model setting, that in function spaces of very smooth functions, such as the infinite-order Sobolev space and the space of analytic functions, the method under consideration is asymptotically minimax; in finite-order Sobolev spaces, the method is rate optimal, and the efficiency in terms of constant when compared with the minimax estimator is reasonably high. The smoothing parameters in the periodic Gaussian regularization can be chosen adaptively without loss of asymptotic efficiency. The results derived in this paper give a partial explanation of the success of the Gaussian reproducing kernel in practice. Simulations are carried out to study the finite sample properties of the periodic Gaussian regularization.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Statistics (http://www.imstat.org/aos/) at http://dx.doi.org/10.1214/00905360400000045

    Sequential Design for Optimal Stopping Problems

    Full text link
    We propose a new approach to solve optimal stopping problems via simulation. Working within the backward dynamic programming/Snell envelope framework, we augment the methodology of Longstaff-Schwartz that focuses on approximating the stopping strategy. Namely, we introduce adaptive generation of the stochastic grids anchoring the simulated sample paths of the underlying state process. This allows for active learning of the classifiers partitioning the state space into the continuation and stopping regions. To this end, we examine sequential design schemes that adaptively place new design points close to the stopping boundaries. We then discuss dynamic regression algorithms that can implement such recursive estimation and local refinement of the classifiers. The new algorithm is illustrated with a variety of numerical experiments, showing that an order of magnitude savings in terms of design size can be achieved. We also compare with existing benchmarks in the context of pricing multi-dimensional Bermudan options.Comment: 24 page

    Simultaneous probability statements for Bayesian P-splines

    Get PDF
    P-splines are a popular approach for fitting nonlinear effects of continuous covariates in semiparametric regression models. Recently, a Bayesian version for P-splines has been developed on the basis of Markov chain Monte Carlo simulation techniques for inference. In this work we adopt and generalize the concept of Bayesian contour probabilities to Bayesian P-splines within a generalized additive models framework. More specifically, we aim at computing the maximum credible level (sometimes called Bayesian p-value) for which a particular parameter vector of interest lies within the corresponding highest posterior density (HPD) region. We are particularly interested in parameter vectors that correspond to a constant, linear or more generally a polynomial fit. As an alternative to HPD regions simultaneous credible intervals could be used to define pseudo contour probabilities. Efficient algorithms for computing contour and pseudo contour probabilities are developed. The performance of the approach is assessed through simulation studies and applications to data for the Munich rental guide and on undernutrition in Zambia and Tanzania

    Improved physiological noise regression in fNIRS: a multimodal extension of the General Linear Model using temporally embedded Canonical Correlation Analysis

    Get PDF
    For the robust estimation of evoked brain activity from functional Near-Infrared Spectroscopy (fNIRS) signals, it is crucial to reduce nuisance signals from systemic physiology and motion. The current best practice incorporates short-separation (SS) fNIRS measurements as regressors in a General Linear Model (GLM). However, several challenging signal characteristics such as non-instantaneous and non-constant coupling are not yet addressed by this approach and additional auxiliary signals are not optimally exploited. We have recently introduced a new methodological framework for the unsupervised multivariate analysis of fNIRS signals using Blind Source Separation (BSS) methods. Building onto the framework, in this manuscript we show how to incorporate the advantages of regularized temporally embedded Canonical Correlation Analysis (tCCA) into the supervised GLM. This approach allows flexible integration of any number of auxiliary modalities and signals. We provide guidance for the selection of optimal parameters and auxiliary signals for the proposed GLM extension. Its performance in the recovery of evoked HRFs is then evaluated using both simulated ground truth data and real experimental data and compared with the GLM with short-separation regression. Our results show that the GLM with tCCA significantly improves upon the current best practice, yielding significantly better results across all applied metrics: Correlation (HbO max. +45%), Root Mean Squared Error (HbO max. -55%), F-Score (HbO up to 3.25-fold) and p-value as well as power spectral density of the noise floor. The proposed method can be incorporated into the GLM in an easily applicable way that flexibly combines any available auxiliary signals into optimal nuisance regressors. This work has potential significance both for conventional neuroscientific fNIRS experiments as well as for emerging applications of fNIRS in everyday environments, medicine and BCI, where high Contrast to Noise Ratio is of importance for single trial analysis.Published versio
    • …
    corecore