90 research outputs found

    Widespread brain reorganization perturbs visuomotor coordination in early glaucoma

    Get PDF
    Glaucoma is the world’s leading cause of irreversible blindness, and falls are a major public health concern in glaucoma patients. Although recent evidence suggests the involvements of the brain toward advanced glaucoma stages, the early brain changes and their clinical and behavioral consequences remain poorly described. This study aims to determine how glaucoma may impair the brain structurally and functionally within and beyond the visual pathway in the early stages, and whether these changes can explain visuomotor impairments in glaucoma. Using multi-parametric magnetic resonance imaging, glaucoma patients presented compromised white matter integrity along the central visual pathway and around the supramarginal gyrus, as well as reduced functional connectivity between the supramarginal gyrus and the visual occipital and superior sensorimotor areas when compared to healthy controls. Furthermore, decreased functional connectivity between the supramarginal gyrus and the visual brain network may negatively impact postural control measured with dynamic posturography in glaucoma patients. Taken together, this study demonstrates that widespread structural and functional brain reorganization is taking place in areas associated with visuomotor coordination in early glaucoma. These results implicate an important central mechanism by which glaucoma patients may be susceptible to visual impairments and increased risk of falls

    Age Differences in Vestibular Processing: Neural and Behavioral Evidence

    Full text link
    The vestibular system is well known for its role in balance, but its mechanisms of action in this role are not well understood. My dissertation aims to provide a better understanding of vestibular brain function, its correlation with postural control, and its alteration with advancing age. This is an important topic considering that falls are the current leading cause of injuries in older adults in the U.S., and they have negative consequences on wellbeing and independence. In this dissertation, I first review the conventional methods for studying vestibular function in the human brain, and I evaluate a novel MRI-compatible method, which relies on a pneumatic tapper. This approach successfully induces vestibular responses, while preventing the aversive effects of stimulation that are common in other approaches. Next, I assess age differences in brain responses to pneumatic vestibular stimulation, and find that older adults demonstrate less sensitivity to stimulation. Also, those with better postural control exhibit less deactivation of cross-modal sensory regions (e.g. visual and somatosensory cortices). This greater engagement of non-vestibular sensory regions in older adults with better balance could be a mechanism to compensate for inefficient vestibular processing. Consistent with this hypothesis, the relationship between postural control and deactivation of sensory regions was only evident in tasks of low difficulty (i.e. normal stance) in which compensatory neural recruitment might be most effective. After assessing the brain responses to vestibular stimulation in terms of activation and deactivation, I examine connectivity of the vestibular cortex with other regions. This last experiment demonstrates that vestibular cortex connectivity increases in response to vestibular stimulation, and young adults exhibit greater connectivity relative to older adults. Also, connectivity predicts postural stability in high difficulty tasks for young adults, and in low difficulty tasks for older adults. Better balance in young adults is associated with less vestibular connectivity (i.e. they engaged vestibular cortex more selectively), whereas better balance in older adults is associated with higher connectivity (i.e. more recruitment of other sensory regions). These findings reinforce the conclusions from the second experiment, and provide more evidence in support of the compensation related utilization of neural circuits hypothesis (CRUNCH) of neural processing in older adults.PHDKines & Psychology PhDUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145857/1/fnoohi_1.pd

    Effects of sensory information over the motor and somatosensory cortex activity during standing

    Get PDF
    The purpose of this study was to identify changes in cortical hemodynamics of motor and somatosensory cortex related to balancing tasks during inhibition of muscle spindles and cutaneous receptors of the dominant leg. Data were obtained from twelve participants (age: 24.8 +/- 4.59 years). The study consisted of four randomized order visits to identify cortical hemodynamic changes while standing under normal conditions (Ctrl), with muscle spindles inhibited (MSI), with cutaneous receptors inhibited (CB), and with the muscle spindles and cutaneous receptors inhibited (BOTH). Muscle spindles were inhibited by applying five minutes of vibration over the soleus muscle; pre- and post-vibration (MSI and BOTH) H-reflex amplitude was measured for later statistical analysis. Lidocaine was applied and left over the foot sole for 30 minutes; sensitivity threshold and two-point discrimination variables were obtained under normal conditions (Ctrl) and anesthetic effect (CB and BOTH). Cortical hemodynamics were measured using an fNIRS placed over each participant's head while performing two counterbalanced blocks of bipedal and unipedal standing with the eyes closed. During MSI and BOTH five minutes of vibration were applied before each block of standing tasks. Statistical analysis consisted of performing different repeated measures ANOVA; then, if needed, post-hoc test consisted of several paired samples t-test (corrected for multiple comparisons). Findings revealed that, compared to pre-, H-reflex amplitude was significantly lower after vibration. Lidocaine findings were inconclusive with a higher sensitivity threshold on the heel during BOTH than Ctrl, but two-point discrimination did not show any significant effect among the visits. Body sway was not different among visits but increased from bipedal to unipedal standing. Cortical hemodynamics revealed that mean oxyhemoglobin activity was not different during bipedal standing among the visits, but it was different during visits that inhibited muscle spindles compared to visits that did not inhibit muscle spindles. In conclusion, muscle spindle inhibition of the soleus muscle can alter the motor and somatosensory cortex's cortical hemodynamics during unipedal standing, but these changes did not influence balance performance. Cutaneous block might not be achieved by applying lidocaine over the foot sole for 30 minutes; therefore, conclusions regarding the cutaneous receptors' influence were not possible

    Neural Correlates of Vestibular Processing During a Spaceflight Analog With Elevated Carbon Dioxide (CO₂): A Pilot Study

    Get PDF
    Astronauts return to Earth from spaceflight missions with impaired mobility and balance; recovery can last weeks postflight. This is due in large part to the altered vestibular signaling and sensory reweighting that occurs in microgravity. The neural mechanisms of spaceflight-induced vestibular changes are not well understood. Head-down-tilt bed rest (HDBR) is a common spaceflight analog environment that allows for study of body unloading, fluid shifts, and other consequences of spaceflight. Subjects in this context still show vestibular changes despite being in Earth’s gravitational environment, potentially due to sensory reweighting. Previously, we found evidence of sensory reweighting and reduced neural efficiency for vestibular processing in subjects who underwent a 70-day HDBR intervention. Here we extend this work by evaluating the impact of HDBR paired with elevated carbon dioxide (CO₂) to mimic International Space Station conditions on vestibular neural processing. Eleven participants (6 males, 34 ± 8 years) completed 30 days of HDBR combined with 0.5% atmospheric CO₂ (HDBR + CO₂). Participants underwent six functional magnetic resonance imaging (fMRI) sessions pre-, during, and post- HDBR + CO₂ while we measured brain activity in response to pneumatic skull taps (a validated method of vestibular stimulation). We also measured mobility and balance performance several times before and after the intervention. We found support for adaptive neural changes within the vestibular system during bed rest that subsequently recovered in several cortical and cerebellar regions. Further, there were multiple brain regions where greater pre- to post- deactivation was associated with reduced pre- to post- balance declines. That is, increased deactivation of certain brain regions associated with better balance post-HDBR + CO₂. We also found that, compared to HDBR alone (n = 13 males; 29 ± 3 years) HDBR + CO₂ is associated with greater increases in activation of multiple frontal, parietal, and temporal regions during vestibular stimulation. This suggests interactive or additive effects of bed rest and elevated CO₂. Finally, we found stronger correlations between pre- to postHDBR + CO₂ brain changes and dependence on the visual system during balance for subjects who developed signs of Spaceflight-Associated Neuro-ocular Syndrome Frontiers in Systems Neuroscience | www.frontiersin.org 1 January 2020 | Volume 13 | Article 80Hupfeld et al. Neural Vestibular Processing With HDBR + CO₂ (SANS). Together, these findings have clear implications for understanding the neural mechanisms of bed rest and spaceflight-related changes in vestibular processing, as well as adaptation to altered sensory inputs

    Cortical recruitment and functional dynamics in postural control adaptation and habituation during vibratory proprioceptive stimulation

    Get PDF
    Objective. Maintaining upright posture is a complex task governed by the integration of afferent sensorimotor and visual information with compensatory neuromuscular reactions. The objective of the present work was to characterize the visual dependency and functional dynamics of cortical activation during postural control. Approach. Proprioceptic vibratory stimulation of calf muscles at 85 Hz was performed to evoke postural perturbation in open-eye (OE) and closed-eye (CE) experimental trials, with pseudorandom binary stimulation phases divided into four segments of 16 stimuli. 64-channel EEG was recorded at 512 Hz, with perturbation epochs defined using bipolar electrodes placed proximal to each vibrator. Power spectra variation and linearity analysis was performed via fast Fourier transformation into six frequency bands (Δ, 0.5–3.5 Hz; θ, 3.5–7.5 Hz; α, 7.5–12.5 Hz; β, 12.5–30 Hz; γlow, 30–50 Hz; and γhigh, 50–80 Hz). Finally, functional connectivity assessment was explored via network segregation and integration analyses. Main results. Spectra variation showed waveform and vision-dependent activation within cortical regions specific to both postural adaptation and habituation. Generalized spectral variation yielded significant shifts from low to high frequencies in CE adaptation trials, with overall activity suppressed in habituation; OE trials showed the opposite phenomenon, with both adaptation and habituation yielding increases in spectral power. Finally, our analysis of functional dynamics reveals novel cortical networks implicated in postural control using EEG source-space brain networks. In particular, our reported significant increase in local θ connectivity May signify the planning of corrective steps and/or the analysis of falling consequences, while α band network integration results reflect an inhibition of error detection within the cingulate cortex, likely due to habituation. Significance. Our findings principally suggest that specific cortical waveforms are dependent upon the availability of visual feedback, and we furthermore present the first evidence that local and global brain networks undergo characteristic modification during postural control

    Cognitive Involvement in Balance, Gait and Dual-Tasking in Aging: A Focused Review From a Neuroscience of Aging Perspective

    Get PDF
    A substantial corpus of evidence suggests that the cognitive involvement in postural control and gait increases with aging. A large portion of such studies were based on dual-task experimental designs, which typically use the simultaneous performance of a motor task (e.g., static or dynamic balancing, walking) and a continuous cognitive task (e.g., mental arithmetic, tone detection). This focused review takes a cognitive neuroscience of aging perspective in interpreting cognitive motor dual-task findings. Specifically, we consider the importance of identifying the neural circuits that are engaged by the cognitive task in relation to those that are engaged during motor task performance. Following the principle of neural overlap, dual-task interference should be greatest when the cognitive and motor tasks engage the same neural circuits. Moreover, the literature on brain aging in general, and models of dedifferentiation and compensation, in particular, suggest that in cognitive motor dual-task performance, the cognitive task engages different neural substrates in young as compared to older adults. Also considered is the concept of multisensory aging, and the degree to which the age-related decline of other systems (e.g., vision, hearing) contribute to cognitive load. Finally, we discuss recent work on focused cognitive training, exercise and multimodal training of older adults and their effects on postural and gait outcomes. In keeping with the principle of neural overlap, the available cognitive training research suggests that targeting processes such as dividing attention and inhibition lead to improved balance and gait in older adults. However, more studies are needed that include functional neuroimaging during actual, upright performance of gait and balance tasks, in order to directly test the principle of neural overlap, and to better optimize the design of intervention studies to improve gait and posture

    Ageing vision and falls: a review

    Get PDF
    Background: Falls are the leading cause of accidental injury and death among older adults. One of three adults over the age of 65 years falls annually. As the size of elderly population increases, falls become a major concern for public health and there is a pressing need to understand the causes of falls thoroughly. Main body of the abstract: While it is well documented that visual functions such as visual acuity, contrast sensitivity, and stereo acuity are correlated with fall risks, little attention has been paid to the relationship between falls and the ability of the visual system to perceive motion in the environment. The omission of visual motion perception in the literature is a critical gap because it is an essential function in maintaining balance. In the present article, we first review existing studies regarding visual risk factors for falls and the effect of ageing vision on falls. We then present a group of phenomena such as vection and sensory reweighting that provide information on how visual motion signals are used to maintain balance. Conclusion: We suggest that the current list of visual risk factors for falls should be elaborated by taking into account the relationship between visual motion perception and balance control

    Peripheral Biomarkers of Inflammation Following Blast Exposure in a Clinical Population

    Get PDF
    Concussions resulting from blast exposures represent a significant source of injury among military service members and the civilian population. Overall, traumatic brain injuries (TBIs) are a significant cause of hospitalization, disability, long-term care, and mortality across all age groups in the United States. Blast induced traumatic brain injury (biTBI) is an increasingly recognized subtype of brain injury, especially among military personnel. Blast exposure may influence a number of neurological processes, such as the inflammatory response, representing a unique biological profile. Outcomes from a TBI vary, even in similar injuries, and biomarkers including proteins and gene expression are increasingly studied to determine potential underlying mechanisms of injury and recovery processes. Biomarkers may yield insight into differential biological pathways in the various severities and subtypes of brain injury. This novel study proposes the examination of clinical and demographic characteristics and the identification of possible biological mechanisms through gene expression and protein analysis following brain injury. This study will be the first to examine gene expression related to inflammatory activation using sequencing and other unique methods to gain insight into immune pathways following blast exposure in clinical populations during the acute and subacute stages of injury. A deeper understanding of the role of inflammatory activation profiles will help direct future research in blast exposure and improve outcomes for individuals affected by this injury

    The acute effects of mental fatigue on balance performance in healthy young and older adults:A systematic review and meta-analysis

    Get PDF
    Cognitive resources contribute to balance control. There is evidence that mental fatigue reduces cognitive resources and impairs balance performance, particularly in older adults and when balance tasks are complex, for example when trying to walk or stand while concurrently performing a secondary cognitive task. We conducted a systematic literature search in PubMed (MEDLINE), Web of Science and Google Scholar to identify eligible studies and performed a random effects meta-analysis to quantify the effects of experimentally induced mental fatigue on balance performance in healthy adults. Subgroup analyses were computed for age (healthy young vs. healthy older adults) and balance task complexity (balance tasks with high complexity vs. balance tasks with low complexity) to examine the moderating effects of these factors on fatigue-mediated balance performance. We identified 7 eligible studies with 9 study groups and 206 participants. Analysis revealed that performing a prolonged cognitive task had a small but significant effect (SMDwm = −0.38) on subsequent balance performance in healthy young and older adults. However, age- and task-related differences in balance responses to fatigue could not be confirmed statistically. Overall, aggregation of the available literature indicates that mental fatigue generally reduces balance in healthy adults. However, interactions between cognitive resource reduction, aging and balance task complexity remain elusive
    corecore