2,480 research outputs found

    D3P : Data-driven demand prediction for fast expanding electric vehicle sharing systems

    Get PDF
    The future of urban mobility is expected to be shared and electric. It is not only a more sustainable paradigm that can reduce emissions, but can also bring societal benefits by offering a more affordable on-demand mobility option to the general public. Many car sharing service providers as well as automobile manufacturers are entering the competition by expanding both their EV fleets and renting/returning station networks, aiming to seize a share of the market and to bring car sharing to the zero emissions level. During their fast expansion, one determinant for success is the ability of predicting the demand of stations as the entire system is growing continuously. There are several challenges in this demand prediction problem: First, unlike most of the existing work which predicts demand only for static systems or at few stages of expansion, in the real world we often need to predict the demand as or even before stations are being deployed or closed, to provide information and decision support. Second, for the new stations to be deployed, there is no historical data available to help the prediction of their demand. Finally, the impact of deploying/closing stations on the other stations in the system can be complex. To address these challenges, we formulate the demand prediction problem in the context of fast expanding electric vehicle sharing systems, and propose a data-driven demand prediction approach which aims to model the expansion dynamics directly from the data. We use a local temporal encoding process to handle the historical data for each existing station, and a dynamic spatial encoding process to take correlations between stations into account with Graph Convolutional Neural Networks (GCN). The encoded features are fed to a multi-scale predictor, which forecasts both the long-term expected demand of the stations and their instant demand in the near future. We evaluate the proposed approach with real-world data collected from a major EV sharing platform for one year. Experimental results demonstrate that our approach significantly outperforms the state of the art, showing up to three-fold performance gain in predicting demand for the expanding EV sharing systems

    A Deep Reinforcement Learning Framework for Rebalancing Dockless Bike Sharing Systems

    Full text link
    Bike sharing provides an environment-friendly way for traveling and is booming all over the world. Yet, due to the high similarity of user travel patterns, the bike imbalance problem constantly occurs, especially for dockless bike sharing systems, causing significant impact on service quality and company revenue. Thus, it has become a critical task for bike sharing systems to resolve such imbalance efficiently. In this paper, we propose a novel deep reinforcement learning framework for incentivizing users to rebalance such systems. We model the problem as a Markov decision process and take both spatial and temporal features into consideration. We develop a novel deep reinforcement learning algorithm called Hierarchical Reinforcement Pricing (HRP), which builds upon the Deep Deterministic Policy Gradient algorithm. Different from existing methods that often ignore spatial information and rely heavily on accurate prediction, HRP captures both spatial and temporal dependencies using a divide-and-conquer structure with an embedded localized module. We conduct extensive experiments to evaluate HRP, based on a dataset from Mobike, a major Chinese dockless bike sharing company. Results show that HRP performs close to the 24-timeslot look-ahead optimization, and outperforms state-of-the-art methods in both service level and bike distribution. It also transfers well when applied to unseen areas

    Deep trip generation with graph neural networks for bike sharing system expansion

    Full text link
    Bike sharing is emerging globally as an active, convenient, and sustainable mode of transportation. To plan successful bike-sharing systems (BSSs), many cities start from a small-scale pilot and gradually expand the system to cover more areas. For station-based BSSs, this means planning new stations based on existing ones over time, which requires prediction of the number of trips generated by these new stations across the whole system. Previous studies typically rely on relatively simple regression or machine learning models, which are limited in capturing complex spatial relationships. Despite the growing literature in deep learning methods for travel demand prediction, they are mostly developed for short-term prediction based on time series data, assuming no structural changes to the system. In this study, we focus on the trip generation problem for BSS expansion, and propose a graph neural network (GNN) approach to predicting the station-level demand based on multi-source urban built environment data. Specifically, it constructs multiple localized graphs centered on each target station and uses attention mechanisms to learn the correlation weights between stations. We further illustrate that the proposed approach can be regarded as a generalized spatial regression model, indicating the commonalities between spatial regression and GNNs. The model is evaluated based on realistic experiments using multi-year BSS data from New York City, and the results validate the superior performance of our approach compared to existing methods. We also demonstrate the interpretability of the model for uncovering the effects of built environment features and spatial interactions between stations, which can provide strategic guidance for BSS station location selection and capacity planning

    Understanding Mobility and Transport Modal Disparities Using Emerging Data Sources: Modelling Potentials and Limitations

    Get PDF
    Transportation presents a major challenge to curb climate change due in part to its ever-increasing travel demand. Better informed policy-making requires up-to-date empirical mobility data to model viable mitigation options for reducing emissions from the transport sector. On the one hand, the prevalence of digital technologies enables a large-scale collection of human mobility traces, providing big potentials for improving the understanding of mobility patterns and transport modal disparities. On the other hand, the advancement in data science has allowed us to continue pushing the boundary of the potentials and limitations, for new uses of big data in transport.This thesis uses emerging data sources, including Twitter data, traffic data, OpenStreetMap (OSM), and trip data from new transport modes, to enhance the understanding of mobility and transport modal disparities, e.g., how car and public transit support mobility differently. Specifically, this thesis aims to answer two research questions: (1) What are the potentials and limitations of using these emerging data sources for modelling mobility? (2) How can these new data sources be properly modelled for characterising transport modal disparities? Papers I-III model mobility mainly using geotagged social media data, and reveal the potentials and limitations of this data source by validating against established sources (Q1). Papers IV-V combine multiple data sources to characterise transport modal disparities (Q2) which further demonstrate the modelling potentials of the emerging data sources (Q1).Despite a biased population representation and low and irregular sampling of the actual mobility, the geolocations of Twitter data can be used in models to produce good agreements with the other data sources on the fundamental characteristics of individual and population mobility. However, its feasibility for estimating travel demand depends on spatial scale, sparsity, sampling method, and sample size. To extend the use of social media data, this thesis develops two novel approaches to address the sparsity issue: (1) An individual-based mobility model that fills the gaps in the sparse mobility traces for synthetic travel demand; (2) A population-based model that uses Twitter geolocations as attractions instead of trips for estimating the flows of people between regions. This thesis also presents two reproducible data fusion frameworks for characterising transport modal disparities. They demonstrate the power of combining different data sources to gain new insights into the spatiotemporal patterns of travel time disparities between car and public transit, and the competition between ride-sourcing and public transport

    Spatio-temporal forecasts for bike availability in dockless bike sharing systems

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesForecasting bike availability is of great importance when turning the shared bike into a reliable, pleasant and uncomplicated mode of transport. Several approaches have been developed to forecast bike availability in station-based bike sharing systems. However, dockless bike sharing systems remain fairly unexplored in that sense, despite their rapid expansion over the world in recent years. To fill this gap, this thesis aims to develop a generally applicable methodology for bike availability forecasting in dockless bike sharing systems, that produces automated, fast and accurate forecasts. To balance speed and accuracy, an approach is taken in which the system area of a dockless bike sharing system is divided into spatially contiguous clusters that represent locations with the same temporal patterns in the historical data. Each cluster gets assigned a model point, for which an ARIMA(p,d,q) forecasting model is fitted to the deseasonalized data. Each individual forecast will inherit the structure and parameters of one of those pre-build models, rather than building a new model on its own. The proposed system was tested through a case study in San Francisco, California. The results showed that the proposed system outperforms simple baseline methods. However, they also highlighted the limited forecastability of dockless bike sharing data

    Improving the service of E-bike sharing by demand pattern analysis: A data-driven approach

    Get PDF
    In recent years, there has been a surge in the popularity of free-floating e-bike sharing. However, the shared mobility sector is fiercely competitive demanding, efficient operations and high-quality service to cater to user expectations. We propose several data-driven methods that apply demand pattern analysis. We suggest the use of a new spatial unit (i.e., overlapping circles) to enhance the cost-efficiency and user-friendliness of e-bike sharing. Moreover, temporal clustering is employed to develop operational strategies that counter the imbalance in supply and demand in recurrent clusters. To evaluate the impact of these strategies, we introduce a framework and apply it in a case study of an e-bike sharing project in The Hague, The Netherlands. We identify 5 hourly clusters which enable reallocation strategies to alleviate the imbalance among spatial units in these clusters. The results demonstrate that the derived operational strategies improve the service significantly, with almost 1.5 times increased ridership, an approximately 20% decrease in vehicle idle time, and a decent monthly net retention rate of around 60%
    corecore