1,344 research outputs found

    A framework for smart production-logistics systems based on CPS and industrial IoT

    Get PDF
    Industrial Internet of Things (IIoT) has received increasing attention from both academia and industry. However, several challenges including excessively long waiting time and a serious waste of energy still exist in the IIoT-based integration between production and logistics in job shops. To address these challenges, a framework depicting the mechanism and methodology of smart production-logistics systems is proposed to implement intelligent modeling of key manufacturing resources and investigate self-organizing configuration mechanisms. A data-driven model based on analytical target cascading is developed to implement the self-organizing configuration. A case study based on a Chinese engine manufacturer is presented to validate the feasibility and evaluate the performance of the proposed framework and the developed method. The results show that the manufacturing time and the energy consumption are reduced and the computing time is reasonable. This paper potentially enables manufacturers to deploy IIoT-based applications and improve the efficiency of production-logistics systems

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Кибербезопасность в образовательных сетях

    Get PDF
    The paper discusses the possible impact of digital space on a human, as well as human-related directions in cyber-security analysis in the education: levels of cyber-security, social engineering role in cyber-security of education, “cognitive vaccination”. “A Human” is considered in general meaning, mainly as a learner. The analysis is provided on the basis of experience of hybrid war in Ukraine that have demonstrated the change of the target of military operations from military personnel and critical infrastructure to a human in general. Young people are the vulnerable group that can be the main goal of cognitive operations in long-term perspective, and they are the weakest link of the System.У статті обговорюється можливий вплив цифрового простору на людину, а також пов'язані з людиною напрямки кібербезпеки в освіті: рівні кібербезпеки, роль соціального інжинірингу в кібербезпеці освіти, «когнітивна вакцинація». «Людина» розглядається в загальному значенні, головним чином як та, що навчається. Аналіз надається на основі досвіду гібридної війни в Україні, яка продемонструвала зміну цілей військових операцій з військовослужбовців та критичної інфраструктури на людину загалом. Молодь - це вразлива група, яка може бути основною метою таких операцій в довгостроковій перспективі, і вони є найслабшою ланкою системи.В документе обсуждается возможное влияние цифрового пространства на человека, а также связанные с ним направления в анализе кибербезопасности в образовании: уровни кибербезопасности, роль социальной инженерии в кибербезопасности образования, «когнитивная вакцинация». «Человек» рассматривается в общем смысле, в основном как ученик. Анализ представлен на основе опыта гибридной войны в Украине, которая продемонстрировала изменение цели военных действий с военного персонала и критической инфраструктуры на человека в целом. Молодые люди являются уязвимой группой, которая может быть главной целью когнитивных операций в долгосрочной перспективе, и они являются самым слабым звеном Систем

    A Survey on Intrusion Detection Systems for Fog and Cloud Computing

    Get PDF
    The rapid advancement of internet technologies has dramatically increased the number of connected devices. This has created a huge attack surface that requires the deployment of effective and practical countermeasures to protect network infrastructures from the harm that cyber-attacks can cause. Hence, there is an absolute need to differentiate boundaries in personal information and cloud and fog computing globally and the adoption of specific information security policies and regulations. The goal of the security policy and framework for cloud and fog computing is to protect the end-users and their information, reduce task-based operations, aid in compliance, and create standards for expected user actions, all of which are based on the use of established rules for cloud computing. Moreover, intrusion detection systems are widely adopted solutions to monitor and analyze network traffic and detect anomalies that can help identify ongoing adversarial activities, trigger alerts, and automatically block traffic from hostile sources. This survey paper analyzes factors, including the application of technologies and techniques, which can enable the deployment of security policy on fog and cloud computing successfully. The paper focuses on a Software-as-a-Service (SaaS) and intrusion detection, which provides an effective and resilient system structure for users and organizations. Our survey aims to provide a framework for a cloud and fog computing security policy, while addressing the required security tools, policies, and services, particularly for cloud and fog environments for organizational adoption. While developing the essential linkage between requirements, legal aspects, analyzing techniques and systems to reduce intrusion detection, we recommend the strategies for cloud and fog computing security policies. The paper develops structured guidelines for ways in which organizations can adopt and audit the security of their systems as security is an essential component of their systems and presents an agile current state-of-the-art review of intrusion detection systems and their principles. Functionalities and techniques for developing these defense mechanisms are considered, along with concrete products utilized in operational systems. Finally, we discuss evaluation criteria and open-ended challenges in this area

    Threat modelling with UML for cybersecurity risk management in OT-IT integrated infrastructures

    Get PDF
    A strong cybersecurity threat management can provide a good security situation against malicious attacks designed to access, modify, delete, destroy or capture user or organization systems and sensitive data. In this work, first the issue of cybersecurity is described, then the common attacks of OT-IT integrated systems as target systems are examined. The concentration area of this thesis is about the security of OT-IT systems. The purpose of this thesis is to provide a Cybersecurity risk management solution fundamentally focused on detecting common cybersecurity intrusions which are widely being used by the malicious attacks to forcefully abuse or take advantage of preciously a computer network. The main idea of this project is to providing a solution which can help the cybersecurity experts of OT-IT companies to catch the abnormalities of the network practically by the time a pre-defined intrusion is being executed by an attacker, in order to give more defensive power against the possible threats. In chapter 3 There will be proposed model is designed with UML and SysML in Eclipse Papyrus software which is a great tool to model a system. Here, I presented a threat modeling detection system which is practically an IDS. Finally, the model will be implemented using the PCA methods and the SVM, which are part of machine learning techniques. The Intrusion Detection System is implemented and the results show the high efficiency of the proposed method

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Open Data

    Get PDF
    Open data is freely usable, reusable, or redistributable by anybody, provided there are safeguards in place that protect the data’s integrity and transparency. This book describes how data retrieved from public open data repositories can improve the learning qualities of digital networking, particularly performance and reliability. Chapters address such topics as knowledge extraction, Open Government Data (OGD), public dashboards, intrusion detection, and artificial intelligence in healthcare
    corecore