8,615 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright © 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Simultaneous actuator and sensor fault reconstruction of singular delayed linear parameter varying systems in the presence of unknown time varying delays and inexact parameters

    Get PDF
    In this article, robust fault diagnosis of a class of singular delayed linear parameter varying systems is considered. The considered system has delayed dynamics with unknown time varying delays and also it is affected by noise, disturbance and faults in both actuators and sensors. Moreover, in addition to the aforementioned unknown inputs and uncertainty, another source of uncertainty related to inexact measures of the scheduling parameters is present in the system. Making use of the descriptor system approach, sensor faults in the system are added as additional states into the original state vector to obtain an augmented system. Then, by designing a suitable proportional double integral unknown input observer (PDIUIO), the states, actuator, and sensor faults are estimated. The uncertainty due to the mismatch between the inexact parameters that schedule the observer and the real parameters that schedule the original system is formulated with an uncertain system approach. In the PDIUIO, the uncertainty induced by unknown inputs (disturbance, noise and actuator, and sensor faults), unknown delays, and inexact parameter measures are attenuated in H8 sense with different weights. The constraints regarding the existence and the robust stability of the designed PDIUIO are formulated using linear matrix inequalities. The efficiency of the proposed method is verified using an application example based on an electrical circuit.Peer ReviewedPostprint (author's final draft

    Actuator fault diagnosis of singular delayed LPV systems with inexact measured parameters via PI unknown input observer

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksIn this study, actuator fault diagnosis of singular delayed linear parameter varying (SDLPV) systems is considered. The considered system has a time-varying state delay and its matrices are dependent on some parameters that are measurable online. It is assumed that the measured parameters are inexact due to the existence of noise in real situations. The system with inexact measured parameters is converted to an uncertain system. Actuator fault diagnosis is carried out based on fault size estimation. For this purpose, the system is transformed to a polytopic representation and then a polytopic proportional integral unknown input observer (PI-UIO) is designed. The proposed observer provides simultaneous state and actuator fault estimation while attenuating, in the H8H8 sense, the effects of input disturbance, output noise and the uncertainty caused by inexact measured parameters. The design procedure of PI-UIO is formulated as a convex optimisation problem with a set of Linear Matrix Inequality (LMI) constraints in the vertices of the parameter domain, guaranteeing robust exponential convergence of the PI-UIO. The efficiency of the proposed method is illustrated with an electrical circuit example modelled as an SDLPV system.Peer ReviewedPostprint (author's final draft

    Robust Fault Detection of Switched Linear Systems with State Delays

    Get PDF
    This correspondence deals with the problem of robust fault detection for discrete-time switched systems with state delays under an arbitrary switching signal. The fault detection filter is used as the residual generator, in which the filter parameters are dependent on the system mode. Attention is focused on designing the robust fault detection filter such that, for unknown inputs, control inputs, and model uncertainties, the estimation error between the residuals and faults is minimized. The problem of robust fault detection is converted into an H infin-filtering problem. By a switched Lyapunov functional approach, a sufficient condition for the solvability of this problem is established in terms of linear matrix inequalities. A numerical example is provided to demonstrate the effectiveness of the proposed method

    Sensor fault diagnosis of singular delayed LPV systems with inexact parameters: an uncertain system approach

    Get PDF
    In this paper, sensor fault diagnosis of a singular delayed linear parameter varying (LPV) system is considered. In the considered system, the model matrices are dependent on some parameters which are real-time measurable. The case of inexact parameter measurements is considered which is close to real situations. Fault diagnosis in this system is achieved via fault estimation. For this purpose, an augmented system is created by including sensor faults as additional system states. Then, an unknown input observer (UIO) is designed which estimates both the system states and the faults in the presence of measurement noise, disturbances and uncertainty induced by inexact measured parameters. Error dynamics and the original system constitute an uncertain system due to inconsistencies between real and measured values of the parameters. Then, the robust estimation of the system states and the faults are achieved with H8 performance and formulated with a set of linear matrix inequalities (LMIs). The designed UIO is also applicable for fault diagnosis of singular delayed LPV systems with unmeasurable scheduling variables. The efficiency of the proposed approach is illustrated with an example.Peer ReviewedPostprint (author's final draft

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
    corecore