1,547 research outputs found

    Scale-invariant rearrangement of resting state networks in the human brain under sustained stimulation

    Get PDF
    Brain activity at rest is characterized by widely distributed and spatially specific patterns of synchronized low-frequency blood-oxygenation level-dependent (BOLD) fluctuations, which correspond to physiologically relevant brain networks. This network behaviour is known to persist also during task execution, yet the details underlying task-associated modulations of within- and between-network connectivity are largely unknown. In this study we exploited a multi-parametric and multi-scale approach to investigate how low-frequency fluctuations adapt to a sustained n-back working memory task. We found that the transition from the resting state to the task state involves a behaviourally relevant and scale-invariant modulation of synchronization patterns within both task-positive and default mode networks. Specifically, decreases of connectivity within networks are accompanied by increases of connectivity between networks. In spite of large and widespread changes of connectivity strength, the overall topology of brain networks is remarkably preserved. We show that these findings are strongly influenced by connectivity at rest, suggesting that the absolute change of connectivity (i.e., disregarding the baseline) may not be the most suitable metric to study dynamic modulations of functional connectivity. Our results indicate that a task can evoke scale-invariant, distributed changes of BOLD fluctuations, further confirming that low frequency BOLD oscillations show a specialized response and are tightly bound to task-evoked activation

    Reproducibility and sensitivity of brain network backbones: a demonstration in Small Vessel Disease

    Get PDF
    Mestrado integrado em Engenharia Biomédica e Biofísica (Sinais e Imagens Médicas) Universidade de Lisboa; Faculdade de Ciências, 2020Whole-brain networks have been used to study the connectivity paths within the brain, constructed using information from diffusion magnetic resonance imaging (dMRI) data and white matter fiber tractography (FT). These techniques can detect alterations in the white matter integrity and changes in axonal connections, whose alterations can be due to the presence of small vessel disease (SVD). However, there is a lack of consensus in network reconstruction methods and therefore no gold-standard model of the human brain network. Moreover, dMRI data are affected by methodological issues such as scan noise, presence of false-positive and false-negative connections. Consequently, the reproducibility and the reliability of these networks is normally very low. A potential solution to deal with the low reproducibility of brain networks is to analyze only its backbone structure. This backbone is assumed to represent the building blocks of structural brain networks and thus composed by a set of strong connections and voided of spurious connections. Such backbone should be reproducible in scan-rescan scenarios and relatively consistent between healthy subjects, while still being sensitive to disease-related changes. Several types of backbones have been proposed, constructed using white matter tractography, with dMRI data. However, no study has directly compared these backbones in terms of reproducibility, consistency, or sensitivity to disease effects in a patient population. In this project, we examined: (1) whether the proposed backbones can be applied to clinical datasets by testing if they are reproducible over two time-points and consistent between groups; (2) if they are sensitive to disease effects both in a cross-sectional and longitudinal analysis. We evaluated our research questions on a longitudinal cohort of patients with cerebral SVD and age matched controls, as well as a validation dataset of healthy young adults. Our cohort contained 87 elderly memory clinic patients with SVD recruited via the UMC Utrecht, scanned twice with an inter-scan time between baseline and follow-up of 27 ± 4 months. We also included baseline scans of 45 healthy elderly, matched in age, sex and education level, to be used as controls. Data from 44 healthy young adults was used as validation data. For each subject, we reconstructed brain structural networks from the diffusion MRI data. Subsequently, we computed 4 types of network backbone, previously described in literature: the Minimal Spanning Tree (MST), the Disparity Core, the K-Core, and Hub-Core. We compared these backbones and tested their reproducibility within subjects, and their consistency across subjects and across groups. Moreover, we performed a cross-sectional analysis between controls and patients at baseline, to evaluate if these backbones can detect disease effects and a longitudinal analysis with patient data over time, to test if they can detect disease progression. Regarding our first objective, our results show that overall MST is the backbone that shows the best reproducibility between repeated scans, as well as the highest consistency among subjects, for all of the three brain templates that we used. Secondly, the MST was also sensitive to network alterations both on a cross-sectional analysis (patients vs. controls) and on a longitudinal analysis (baseline vs. follow-up). We therefore conclude that, the use of these network backbones, as an alternative of the whole-brain network analysis, can successfully be applied to clinical datasets as a novel and reliable way to detect disease effects and evaluate disease progression.A demência vascular cerebral (SVD) é a segunda principal causa de demência, depois da doença de Alzheimer. Este tipo de demência está relacionado com patologias vasculares cerebrais, assim como com perda de funcionalidades cognitivas. Vários estudos explicam que a degradação da atividade cognitiva característica desta doença pode dever-se à diminuição da integridade da substância branca e a alterações nas conexões axonais. O estudo da conectividade cerebral tem sido uma forte aposta no estudo das causas e da forma como a demência vascular cerebral evolui. A construção de mapas neuronais é uma das práticas que mais tem sido usada para estudar e entender os mecanismos principais da conectividade cerebral: representar o cérebro como um conjunto de regiões e as ligações entre elas. Para isso, utiliza-se informação proveniente de imagens de ressonância magnética por difusão (dMRI), especificamente de imagens por tensor de difusão (DTI), capazes de medir a magnitude de difusão das moléculas de água no cérebro in vivo, através de gradientes aplicados em pelo menos seis direções no espaço. Desta forma, é possível estimar a direção principal do movimento das moléculas de água que compõem as microfibras da substância branca cerebral, e reconstruir os percursos de neurónios que conectam as várias regiões do cérebro. Este processo é chamado de tractografia de fibras (FT), que proporciona um modelo a três dimensões da arquitetura tecidular cerebral, permitindo a visualização e o estudo da conectividade e da continuidade dos percursos neuronais. Assim, é possível obter informação quantitativa acerca do sistema nervoso in vivo e contruir mapas de conectividade cerebral. No entanto, existe falta de consenso sobre as regras de reconstrução destes mapas neuronais, fazendo com que não haja um modelo-base para o estudo dos mesmos. Além disto, os dados provenientes das imagens de dMRI são facilmente afetados e podem diferir da realidade. Alguns exemplos mais comuns são a presença de ruído e existência tanto de conexões falsas como a ausência de conexões que deviam estar presentes, chamadas respetivamente de falsos-positivos e falsos-negativos. Consequentemente, os modelos de conectividade não podem ser comparados entre diferentes aparelhos de ressonância, nem mesmo entre diferentes momentos temporais, por terem uma baixa reprodutibilidade, tornando estes métodos poucos fiáveis. As soluções propostas para lidar com esta falta de consenso quanto à reconstrução de mapas ou redes neuronais e a presença de conexões falsas podem ser agrupadas em duas categorias: normalização e redução da rede neuronal através da aplicação de um limiar (threshold, em inglês). Contudo, os processos de normalização para remover certas tendências erradas destas redes não eram suficientes e, por vezes, introduziam outras dependências. Quanto à aplicação de limiares, mesmo que alguns estudos mostrem que a sua utilização no mapa neuronal do cérebro todo pode efetivamente eliminar alguns efeitos, a própria escolha de um limiar pode conduzir a modificações nas redes neuronais através de eliminação de certas comunicações fundamentais. Como uma extensão da redução destas redes neuronais com o objetivo de lidar com a sua baixa reprodutibilidade, vários estudos têm proposto uma nova abordagem: analisar apenas uma espécie de esqueleto das mesmas. O objetivo deste “esqueleto-neuronal” é o de representar as ligações mais importantes e estruturais e estar isento de falsas conexões. Idealmente, este “esqueleto-neuronal” seria reprodutível entre diferentes dispositivos e consistente entre indivíduos saudáveis, enquanto se manteria fiel às diferenças causadas pela presença de doenças. Assim sendo, o estudo da extração de um esqueleto-neuronal, visa encontrar estruturas fundamentais que evitem a perda de propriedades topológicas. Por exemplo, considerando pacientes com SVD, estes esqueletos-neuronais devem fornecer uma melhor compreensão das alterações da conectividade cerebral ao longo do tempo, permitindo uma comparação sólida entre diferentes pontos no tempo e a identificação de alterações que sejam consequência inegável de doença. Alguns tipos destas redes neuronais foram já propostos em diversas publicações científicas, que podem ser construídos utilizando FT de substância branca com informação proveniente de dMRI. Neste estudo, utilizamos o Minimum Spanning Tree (MST), o K-Core, o Disparity Core e o Hub-Core, que são redes-esqueleto já existentes na literatura. A eficácia tanto do uso do MST como do K-Core já foram comprovadas tanto a nível de deteção de alterações da conectividade cerebral, como na medida em que conseguem manter as conexões mais importantes do esqueleto cerebral, eliminando conexões que podem ser consideradas duvidosas. No entanto, até agora, nenhum estudo se focou na comparação dos diferentes esqueletos-neuronais existentes quanto à sua reproducibilidade, consistência ou sensibilidade aos efeitos de doença ao longo do tempo. Neste estudo, utilizamos os quatro modelos-esqueletos mencionados anteriormente, avaliando: (1) se estes esqueletos-neuronais podem ser efetivamente aplicados a dados clínicos, testando a sua reproducibilidade entre dois pontos de tempos distintos e a sua consistência entre grupos de controlos saudáveis; (2) se são sensíveis a efeitos causados por doença, tanto entre controlos e pacientes, como na evolução de alterações de conectividade em pacientes ao longo do tempo. Os dados longitudinais utilizados provêm de imagens ponderadas em T1 de 87 pacientes idosos com SVD, assim como de um grupo controlo de 45 idosos saudáveis coincidentes em idade com estes pacientes, e de um grupo de validação constituído por 44 jovens saudáveis. Para cada um dos objetivos, testamos os 4 tipos de esqueletos-neuronais, baseados primeiramente num modelo que divide o córtex cerebral em 90 regiões de interesse (ROIs) e posteriormente em modelos de 200 e 250 regiões. No pós-processamento, foram construídas e comparadas matrizes de conectividade que representam as ligações entre as várias regiões em que dividimos o córtex. Com estas matrizes foi possível calcular valores de conectividade como a força nodal (NS) e a eficiência global (GE). Também foram comparadas matrizes que diziam respeito a parâmetros específicos de DTI como a anisotropia fracionada (FA) e a difusividade média (MD). A análise estatística foi feita utilizando testes paramétricos t-test e ANOVA. Os resultados indicam que, no geral, estas redes podem ser utilizadas como forma de analisar e estudar mapas de conectividade cerebral de forma mais precisa, pois são reprodutíveis entre controlos saudáveis em tempos diferentes, e conseguem detetar as diferenças de conectividade devidas a doença. Além disso, representam as ligações mais importantes da rede de conectividade neuronal, criando uma base para comparações fiáveis. A maior parte dos esqueletos-neuronais mostraram ser consistentes dentro de cada grupo de estudo, e apresentaram diferenças de conectividade entre controlos e pacientes. Neste caso, comparando sujeitos saudáveis com pacientes, os valores das componentes de FA e de MD destes esqueletos neuronais, e as suas alterações, vão de encontro com a literatura sobre a evolução do estado das ligações neuronais no desenvolvimento de demência. Quanto à análise longitudinal dos pacientes, concluímos que a NS representa uma medida mais fiável de análise das alterações ao longo do tempo da doença do que a GE. Finalmente, e ainda que algumas destes esqueletos-neuronais tenham mostrado melhor desempenho do que outros em diferentes abordagens, concluímos que o MST é a rede-esqueleto que dispõe dos melhores resultados utilizando o modelo de 90 e 200 ROIs, do cérebro todo, assim como usando o modelo de 250 ROIs aplicado só ao hemisfério esquerdo. Em suma, conclui-se que a utilização destes tipos de redes-esqueleto pode vir a tornar-se uma melhor alternativa em relação à utilização das redes neuronais originais do cérebro completo, visto que podem ser eficazmente aplicadas à análise de dados clínicos como forma fiável de detetar presença e evolução de doenças

    Machine Intelligence Identifies Soluble TNFa as a Therapeutic Target for Spinal Cord Injury

    Get PDF
    Traumatic spinal cord injury (SCI) produces a complex syndrome that is expressed across multiple endpoints ranging from molecular and cellular changes to functional behavioral deficits. Effective therapeutic strategies for CNS injury are therefore likely to manifest multi-factorial effects across a broad range of biological and functional outcome measures. Thus, multivariate analytic approaches are needed to capture the linkage between biological and neurobehavioral outcomes. Injury-induced neuroinflammation (NI) presents a particularly challenging therapeutic target, since NI is involved in both degeneration and repair. Here, we used big-data integration and large-scale analytics to examine a large dataset of preclinical efficacy tests combining five different blinded, fully counter-balanced treatment trials for different acute anti-inflammatory treatments for cervical spinal cord injury in rats. Multi-dimensional discovery, using topological data analysis (TDA) and principal components analysis (PCA) revealed that only one showed consistent multidimensional syndromic benefit: intrathecal application of recombinant soluble TNFα receptor 1 (sTNFR1), which showed an inverse-U dose response efficacy. Using the optimal acute dose, we showed that clinically-relevant 90 min delayed treatment profoundly affected multiple biological indices of NI in the first 48 h after injury, including reduction in pro-inflammatory cytokines and gene expression of a coherent complex of acute inflammatory mediators and receptors. Further, a 90 min delayed bolus dose of sTNFR1 reduced the expression of NI markers in the chronic perilesional spinal cord, and consistently improved neurological function over 6 weeks post SCI. These results provide validation of a novel strategy for precision preclinical drug discovery that is likely to improve translation in the difficult landscape of CNS trauma, and confirm the importance of TNFα signaling as a therapeutic target

    SEARCHING NEUROIMAGING BIOMARKERS IN MENTAL DISORDERS WITH GRAPH AND MULTIMODAL FUSION ANALYSIS OF FUNCTIONAL CONNECTIVITY

    Get PDF
    Mental disorders such as schizophrenia (SZ), bipolar (BD), and major depression disorders (MDD) can cause severe symptoms and life disruption. They share some symptoms, which can pose a major clinical challenge to their differentiation. Objective biomarkers based on neuroimaging may help to improve diagnostic accuracy and facilitate optimal treatment for patients. Over the last decades, non-invasive in-vivo neuroimaging techniques such as magnetic resonance imaging (MRI) have been increasingly applied to measure structure and function in human brains. With functional MRI (fMRI) or structural MRI (sMRI), studies have identified neurophysiological deficits in patients’ brain from different perspective. Functional connectivity (FC) analysis is an approach that measures functional integration in brains. By assessing the temporal coherence of the hemodynamic activity among brain regions, FC is considered capable of characterizing the large-scale integrity of neural activity. In this work, we present two data analysis frameworks for biomarker detection on brain imaging with FC, 1) graph analysis of FC and 2) multimodal fusion analysis, to better understand the human brain. Graph analysis reveals the interaction among brain regions based on graph theory, while the multimodal fusion framework enables us to utilize the strength of different imaging modalities through joint analysis. Four applications related to FC using these frameworks were developed. First, FC was estimated using a model-based approach, and revealed altered the small-world network structure in SZ. Secondly, we applied graph analysis on functional network connectivity (FNC) to differentiate BD and MDD during resting-state. Thirdly, two functional measures, FNC and fractional amplitude of low frequency fluctuations (fALFF), were spatially overlaid to compare the FC and spatial alterations in SZ. And finally, we utilized a multimodal fusion analysis framework, multi-set canonical correlation analysis + joint independent component analysis (mCCA+jICA) to link functional and structural abnormalities in BD and MDD. We also evaluated the accuracy of predictive diagnosis through classifiers generated on the selected features. In summary, via the two frameworks, our work has made several contributions to advance FC analysis, which improves our understanding of underlying brain function and structure, and our findings may be ultimately useful for the development of biomarkers of mental disease

    The trend of disruption in the functional brain network topology of Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is a progressive disorder associated with cognitive dysfunction that alters the brain’s functional connectivity. Assessing these alterations has become a topic of increasing interest. However, a few studies have examined different stages of AD from a complex network perspective that cover different topological scales. This study used resting state fMRI data to analyze the trend of functional connectivity alterations from a cognitively normal (CN) state through early and late mild cognitive impairment (EMCI and LMCI) and to Alzheimer’s disease. The analyses had been done at the local (hubs and activated links and areas), meso (clustering, assortativity, and rich-club), and global (small-world, small-worldness, and efficiency) topological scales. The results showed that the trends of changes in the topological architecture of the functional brain network were not entirely proportional to the AD progression. There were network characteristics that have changed non-linearly regarding the disease progression, especially at the earliest stage of the disease, i.e., EMCI. Further, it has been indicated that the diseased groups engaged somatomotor, frontoparietal, and default mode modules compared to the CN group. The diseased groups also shifted the functional network towards more random architecture. In the end, the methods introduced in this paper enable us to gain an extensive understanding of the pathological changes of the AD process

    The Trend of Disruption in the Functional Brain Network Topology of Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) is a progressive disorder associated with cognitive dysfunction that alters the brain’s functional connectivity. Assessing these alterations has become a topic of increasing interest. However, a few studies have examined different stages of AD from a complex network perspective that cover different topological scales. This study used resting state fMRI data to analyze the trend of functional connectivity alterations from a cognitively normal (CN) state through early and late mild cognitive impairment (EMCI and LMCI) and to Alzheimer’s disease. The analyses had been done at the local (hubs and activated links and areas), meso (clustering, assortativity, and rich-club), and global (small-world, small-worldness, and efficiency) topological scales. The results showed that the trends of changes in the topological architecture of the functional brain network were not entirely proportional to the AD progression. There were network characteristics that have changed non-linearly regarding the disease progression, especially at the earliest stage of the disease, i.e., EMCI. Further, it has been indicated that the diseased groups engaged somatomotor, frontoparietal, and default mode modules compared to the CN group. The diseased groups also shifted the functional network towards more random architecture. In the end, the methods introduced in this paper enable us to gain an extensive understanding of the pathological changes of the AD process

    Cognitive complaints in older adults at risk for Alzheimer's disease are associated with altered resting-state networks

    Get PDF
    INTRODUCTION: Pathophysiological changes that accompany early clinical symptoms in prodromal Alzheimer's disease (AD) may have a disruptive influence on brain networks. We investigated resting-state functional magnetic resonance imaging (rsfMRI), combined with brain connectomics, to assess changes in whole-brain functional connectivity (FC) in relation to neurocognitive variables. METHODS: Participants included 58 older adults who underwent rsfMRI. Individual FC matrices were computed based on a 278-region parcellation. FastICA decomposition was performed on a matrix combining all subjects' FC. Each FC pattern was then used as a response in a multilinear regression model including neurocognitive variables associated with AD (cognitive complaint index [CCI] scores from self and informant, an episodic memory score, and an executive function score). RESULTS: Three connectivity independent component analysis (connICA) components (RSN, VIS, and FP-DMN FC patterns) associated with neurocognitive variables were identified based on prespecified criteria. RSN-pattern, characterized by increased FC within all resting-state networks, was negatively associated with self CCI. VIS-pattern, characterized by an increase in visual resting-state network, was negatively associated with CCI self or informant scores. FP-DMN-pattern, characterized by an increased interaction of frontoparietal and default mode networks (DMN), was positively associated with verbal episodic memory. DISCUSSION: Specific patterns of FC were differently associated with neurocognitive variables thought to change early in the course of AD. An integrative connectomics approach relating cognition to changes in FC may help identify preclinical and early prodromal stages of AD and help elucidate the complex relationship between subjective and objective indices of cognitive decline and differences in brain functional organization
    corecore