4 research outputs found

    Personnalisation basée sur l'imagerie de modèles cardiaques électrophysiologiques pour la planification du traitement de la tachycardie ventriculaire

    Get PDF
    Acute infarct survival rates have drastically improved over the last decades, mechanically increasing chronic infarct related affections.Among these affections, ischaemic ventricular tachycardia (VT) is a particularly serious arrhythmia that can lead to the often lethal ventricular fibrillation. VT can be treated by radio frequency ablation of the arrhythmogenic substrate.The first phase of this long and risky interventional cardiology procedure is an electrophysiological (EP) exploration of the heart.This phase aims at localising the ablation targets, notably by inducing the arrhythmia in a controlled setting. In this work we propose to re-create this exploration phase in silico, by personalising cardiac EP models.We show that key information about infarct scar location and heterogeneity can be automatically obtained by a deep learning-based automated segmentation of the myocardium on computed tomography (CT) images.Our goal is to use this information to run patient-specific simulations of depolarisation wave propagation in the myocardium, mimicking the interventional cardiology exploration phase.We start by studying the relationship between the depolarisation wave propagation velocity and the left ventricular wall thickness to personalise an Eikonal model, an approach that can successfully reproduce periodic activation maps of the left ventricle recorded during VT.We then propose efficient algorithms to detect the repolarisation wave on unipolar electrograms (UEG), that we use to analyse the UEGs embedded in such intra-cardiac recordings.Thanks to a multimodal registration between these recordings and CT images, we establish relationships between action potential durations/restitution properties and left ventricular wall thickness.These relationships are finally used to parametrise a reaction-diffusion model able to reproduce interventional cardiologists' induction protocols that trigger realistic and documented VTs. inteinterventional cardiologists' induction protocols that trigger realistic and documented VTs.La survie lors de la phase aiguë de l'infarctus du myocarde a énormément progressé au cours des dernières décennies, augmentant ainsi la mortalité des affections liées à l'infarctus chronique.Parmi ces pathologies, la tachycardie ventriculaire (TV) est une arythmie particulièrement grave qui peut conduire à la fibrillation ventriculaire, souvent fatale.La TV peut être traitée par ablation par radio-fréquences du substrat arythmogène.La première phase de cette procédure, longue et risquée, est une exploration électrophysiologique (EP) du cœur consistant à déterminer les cibles de cette ablation, notamment en provoquant l'arythmie dans un environnement contrôléDans cette thèse, nous proposons de re-créer in silico cette phase exploratoire, en personnalisation des modèles cardiaques EP.Nous montrons que des informations clefs à propos de la localisation et de l'hétérogénéité de la cicatrice d'infarctus peuvent être obtenues automatiquement par une segmentation d'images tomodensitométriques (TDM) utilisant un réseau de neurones artificiels.Notre but est alors d'utiliser ces informations pour réaliser des simulations spécifiques à un patient de la propagation de l'onde de dépolarisation dans le myocarde, reproduisant la phase exploratoire décrite plus haut.Nous commençons par étudier la relation entre la vitesse de l'onde de dépolarisation et l'épaisseur du ventricule gauche, relation qui permet de personnaliser un modèle EP Eikonal; cette approche permet fr reproduire des cartes d'activations périodiques du ventricule gauche obtenues durant des TV.Nous proposons ensuite des algorithmes efficaces pour détecter l'onde de repolarisation sur les électrogrammes unipolaires (EGU), que nous utilisons pour analyser les EGU contenus dans les enregistrements intra-cardiaques à notre disposition.Grâce à un recalage multimodal entre ces enregistrements et des images TDM, nous établissons des relations entre durées de potentiels d'action (DPA)/propriétés de restitutions de DPA et épaisseur du ventricule gauche.Enfin, ces relations sont utilisés pour paramétrer un modèle de réaction-diffusion capable de reproduire fidèlement les protocoles d'induction des cardiologues interventionnels qui provoquent des TV réalistes et documentées

    Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting

    Full text link
    Forecasting complex dynamical phenomena in settings where only partial knowledge of their dynamics is available is a prevalent problem across various scientific fields. While purely data-driven approaches are arguably insufficient in this context, standard physical modeling based approaches tend to be over-simplistic, inducing non-negligible errors. In this work, we introduce the APHYNITY framework, a principled approach for augmenting incomplete physical dynamics described by differential equations with deep data-driven models. It consists in decomposing the dynamics into two components: a physical component accounting for the dynamics for which we have some prior knowledge, and a data-driven component accounting for errors of the physical model. The learning problem is carefully formulated such that the physical model explains as much of the data as possible, while the data-driven component only describes information that cannot be captured by the physical model, no more, no less. This not only provides the existence and uniqueness for this decomposition, but also ensures interpretability and benefits generalization. Experiments made on three important use cases, each representative of a different family of phenomena, i.e. reaction-diffusion equations, wave equations and the non-linear damped pendulum, show that APHYNITY can efficiently leverage approximate physical models to accurately forecast the evolution of the system and correctly identify relevant physical parameters

    Improving the domain generalization and robustness of neural networks for medical imaging

    Get PDF
    Deep neural networks are powerful tools to process medical images, with great potential to accelerate clinical workflows and facilitate large-scale studies. However, in order to achieve satisfactory performance at deployment, these networks generally require massive labeled data collected from various domains (e.g., hospitals, scanners), which is rarely available in practice. The main goal of this work is to improve the domain generalization and robustness of neural networks for medical imaging when labeled data is limited. First, we develop multi-task learning methods to exploit auxiliary data to enhance networks. We first present a multi-task U-net that performs image classification and MR atrial segmentation simultaneously. We then present a shape-aware multi-view autoencoder together with a multi-view U-net, which enables extracting useful shape priors from complementary long-axis views and short-axis views in order to assist the left ventricular myocardium segmentation task on the short-axis MR images. Experimental results show that the proposed networks successfully leverage complementary information from auxiliary tasks to improve model generalization on the main segmentation task. Second, we consider utilizing unlabeled data. We first present an adversarial data augmentation method with bias fields to improve semi-supervised learning for general medical image segmentation tasks. We further explore a more challenging setting where the source and the target images are from different data distributions. We demonstrate that an unsupervised image style transfer method can bridge the domain gap, successfully transferring the knowledge learned from labeled balanced Steady-State Free Precession (bSSFP) images to unlabeled Late Gadolinium Enhancement (LGE) images, achieving state-of-the-art performance on a public multi-sequence cardiac MR segmentation challenge. For scenarios with limited training data from a single domain, we first propose a general training and testing pipeline to improve cardiac image segmentation across various unseen domains. We then present a latent space data augmentation method with a cooperative training framework to further enhance model robustness against unseen domains and imaging artifacts.Open Acces

    Planification de l’ablation radiofréquence des arythmies cardiaques en combinant modélisation et apprentissage automatique

    Get PDF
    Cardiac arrhythmias are heart rhythm disruptions which can lead to sudden cardiac death. They require a deeper understanding for appropriate treatment planning. In this thesis, we integrate personalized structural and functional data into a 3D tetrahedral mesh of the biventricular myocardium. Next, the Mitchell-Schaeffer (MS) simplified biophysical model is used to study the spatial heterogeneity of electrophysiological (EP) tissue properties and their role in arrhythmogenesis. Radiofrequency ablation (RFA) with the elimination of local abnormal ventricular activities (LAVA) has recently arisen as a potentially curative treatment for ventricular tachycardia but the EP studies required to locate LAVA are lengthy and invasive. LAVA are commonly found within the heterogeneous scar, which can be imaged non-invasively with 3D delayed enhanced magnetic resonance imaging (DE-MRI). We evaluate the use of advanced image features in a random forest machine learning framework to identify areas of LAVA-inducing tissue. Furthermore, we detail the dataset’s inherent error sources and their formal integration in the training process. Finally, we construct MRI-based structural patient-specific heart models and couple them with the MS model. We model a recording catheter using a dipole approach and generate distinct normal and LAVA-like electrograms at locations where they have been found in clinics. This enriches our predictions of the locations of LAVA-inducing tissue obtained through image-based learning. Confidence maps can be generated and analyzed prior to RFA to guide the intervention. These contributions have led to promising results and proofs of concepts.Les arythmies sont des perturbations du rythme cardiaque qui peuvent entrainer la mort subite et requièrent une meilleure compréhension pour planifier leur traitement. Dans cette thèse, nous intégrons des données structurelles et fonctionnelles à un maillage 3D tétraédrique biventriculaire. Le modèle biophysique simplifié de Mitchell-Schaeffer (MS) est utilisé pour étudier l’hétérogénéité des propriétés électrophysiologiques (EP) du tissu et leur rôle sur l’arythmogénèse. L’ablation par radiofréquence (ARF) en éliminant les activités ventriculaires anormales locales (LAVA) est un traitement potentiellement curatif pour la tachycardie ventriculaire, mais les études EP requises pour localiser les LAVA sont longues et invasives. Les LAVA se trouvent autour de cicatrices hétérogènes qui peuvent être imagées de façon non-invasive par IRM à rehaussement tardif. Nous utilisons des caractéristiques d’image dans un contexte d’apprentissage automatique avec des forêts aléatoires pour identifier des aires de tissu qui induisent des LAVA. Nous détaillons les sources d’erreur inhérentes aux données et leur intégration dans le processus d’apprentissage. Finalement, nous couplons le modèle MS avec des géométries du coeur spécifiques aux patients et nous modélisons le cathéter avec une approche par un dipôle pour générer des électrogrammes normaux et des LAVA aux endroits où ils ont été localisés en clinique. Cela améliore la prédiction de localisation du tissu induisant des LAVA obtenue par apprentissage sur l’image. Des cartes de confiance sont générées et peuvent être utilisées avant une ARF pour guider l’intervention. Les contributions de cette thèse ont conduit à des résultats et des preuves de concepts prometteurs
    corecore