6 research outputs found

    Improving the domain generalization and robustness of neural networks for medical imaging

    Get PDF
    Deep neural networks are powerful tools to process medical images, with great potential to accelerate clinical workflows and facilitate large-scale studies. However, in order to achieve satisfactory performance at deployment, these networks generally require massive labeled data collected from various domains (e.g., hospitals, scanners), which is rarely available in practice. The main goal of this work is to improve the domain generalization and robustness of neural networks for medical imaging when labeled data is limited. First, we develop multi-task learning methods to exploit auxiliary data to enhance networks. We first present a multi-task U-net that performs image classification and MR atrial segmentation simultaneously. We then present a shape-aware multi-view autoencoder together with a multi-view U-net, which enables extracting useful shape priors from complementary long-axis views and short-axis views in order to assist the left ventricular myocardium segmentation task on the short-axis MR images. Experimental results show that the proposed networks successfully leverage complementary information from auxiliary tasks to improve model generalization on the main segmentation task. Second, we consider utilizing unlabeled data. We first present an adversarial data augmentation method with bias fields to improve semi-supervised learning for general medical image segmentation tasks. We further explore a more challenging setting where the source and the target images are from different data distributions. We demonstrate that an unsupervised image style transfer method can bridge the domain gap, successfully transferring the knowledge learned from labeled balanced Steady-State Free Precession (bSSFP) images to unlabeled Late Gadolinium Enhancement (LGE) images, achieving state-of-the-art performance on a public multi-sequence cardiac MR segmentation challenge. For scenarios with limited training data from a single domain, we first propose a general training and testing pipeline to improve cardiac image segmentation across various unseen domains. We then present a latent space data augmentation method with a cooperative training framework to further enhance model robustness against unseen domains and imaging artifacts.Open Acces

    Book of abstracts

    Get PDF

    Reordering for Improved Constrained Reconstruction from Undersampled k-Space Data

    Get PDF
    Recently, there has been a significant interest in applying reconstruction techniques, like constrained reconstruction or compressed sampling methods, to undersampled k-space data in MRI. Here, we propose a novel reordering technique to improve these types of reconstruction methods. In this technique, the intensities of the signal estimate are reordered according to a preprocessing step when applying the constraints on the estimated solution within the iterative reconstruction. The ordering of the intensities is such that it makes the original artifact-free signal monotonic and thus minimizes the finite differences norm if the correct image is estimated; this ordering can be estimated based on the undersampled measured data. Theory and example applications of the method for accelerating myocardial perfusion imaging with respiratory motion and brain diffusion tensor imaging are presented
    corecore