233,351 research outputs found

    Using Density Functional Theory to Model Realistic TiO2 Nanoparticles, Their Photoactivation and Interaction with Water

    Full text link
    Computational modeling of titanium dioxide nanoparticles of realistic size is extremely relevant for the direct comparison with experiments but it is also a rather demanding task. We have recently worked on a multistep/scale procedure to obtain global optimized minimum structures for chemically stable spherical titania nanoparticles of increasing size, with diameter from 1.5 nm (~300 atoms) to 4.4 nm (~4000 atoms). We use first self-consistent-charge density functional tight-binding (SCC-DFTB) methodology to perform thermal annealing simulations to obtain globally optimized structures and then hybrid density functional theory (DFT) to refine them and to achieve high accuracy in the description of structural and electronic properties. This allows also to assess SCC-DFTB performance in comparison with DFT(B3LYP) results. As a further step, we investigate photoexcitation and photoemission processes involving electron/hole pair formation, separation, trapping and recombination in the nanosphere of medium size by hybrid DFT. Finally, we show how a recently defined new set of parameters for SCC-DFTB allows for a proper description of titania/water multilayers interface, which paves the way for modeling large realistic nanoparticles in aqueous environment

    Model-Based Systems Engineering Approach to Distributed and Hybrid Simulation Systems

    Get PDF
    INCOSE defines Model-Based Systems Engineering (MBSE) as the formalized application of modeling to support system requirements, design, analysis, verification, and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases. One very important development is the utilization of MBSE to develop distributed and hybrid (discrete-continuous) simulation modeling systems. MBSE can help to describe the systems to be modeled and help make the right decisions and partitions to tame complexity. The ability to embrace conceptual modeling and interoperability techniques during systems specification and design presents a great advantage in distributed and hybrid simulation systems development efforts. Our research is aimed at the definition of a methodological framework that uses MBSE languages, methods and tools for the development of these simulation systems. A model-based composition approach is defined at the initial steps to identify distributed systems interoperability requirements and hybrid simulation systems characteristics. Guidelines are developed to adopt simulation interoperability standards and conceptual modeling techniques using MBSE methods and tools. Domain specific system complexity and behavior can be captured with model-based approaches during the system architecture and functional design requirements definition. MBSE can allow simulation engineers to formally model different aspects of a problem ranging from architectures to corresponding behavioral analysis, to functional decompositions and user requirements (Jobe, 2008)

    Modeling and control of operator functional state in a unified framework of fuzzy inference petri nets

    Get PDF
    Background and objective: In human-machine (HM) hybrid control systems, human operator and machine cooperate to achieve the control objectives. To enhance the overall HM system performance, the discrete manual control task-load by the operator must be dynamically allocated in accordance with continuous-time fluctuation of psychophysiological functional status of the operator, so-called operator functional state (OFS). The behavior of the HM system is hybrid in nature due to the co-existence of discrete task-load (control) variable and continuous operator performance (system output) variable. Methods: Petri net is an effective tool for modeling discrete event systems, but for hybrid system involving discrete dynamics, generally Petri net model has to be extended. Instead of using different tools to represent continuous and discrete components of a hybrid system, this paper proposed a method of fuzzy inference Petri nets (FIPN) to represent the HM hybrid system comprising a Mamdani-type fuzzy model of OFS and a logical switching controller in a unified framework, in which the task-load level is dynamically reallocated between the operator and machine based on the model-predicted OFS. Furthermore, this paper used a multi-model approach to predict the operator performance based on three electroencephalographic (EEG) input variables (features) via the Wang-Mendel (WM) fuzzy modeling method. The membership function parameters of fuzzy OFS model for each experimental participant were optimized using artificial bee colony (ABC) evolutionary algorithm. Three performance indices, RMSE, MRE, and EPR, were computed to evaluate the overall modeling accuracy. Results: Experiment data from six participants are analyzed. The results show that the proposed method (FIPN with adaptive task allocation) yields lower breakdown rate (from 14.8% to 3.27%) and higher human performance (from 90.30% to 91.99%). Conclusion: The simulation results of the FIPN-based adaptive HM (AHM) system on six experimental participants demonstrate that the FIPN framework provides an effective way to model and regulate/optimize the OFS in HM hybrid systems composed of continuous-time OFS model and discrete-event switching controller
    • …
    corecore