1,773 research outputs found

    Magnetoencephalography as a tool in psychiatric research: current status and perspective

    Get PDF
    The application of neuroimaging to provide mechanistic insights into circuit dysfunctions in major psychiatric conditions and the development of biomarkers are core challenges in current psychiatric research. In this review, we propose that recent technological and analytic advances in Magnetoencephalography (MEG), a technique which allows the measurement of neuronal events directly and non-invasively with millisecond resolution, provides novel opportunities to address these fundamental questions. Because of its potential in delineating normal and abnormal brain dynamics, we propose that MEG provides a crucial tool to advance our understanding of pathophysiological mechanisms of major neuropsychiatric conditions, such as Schizophrenia, Autism Spectrum Disorders, and the dementias. In our paper, we summarize the mechanisms underlying the generation of MEG signals and the tools available to reconstruct generators and underlying networks using advanced source-reconstruction techniques. We then survey recent studies that have utilized MEG to examine aberrant rhythmic activity in neuropsychiatric disorders. This is followed by links with preclinical research, which have highlighted possible neurobiological mechanisms, such as disturbances in excitation/inhibition parameters, which could account for measured changes in neural oscillations. In the final section of the paper, challenges as well as novel methodological developments are discussed which could pave the way for a widespread application of MEG in translational research with the aim of developing biomarkers for early detection and diagnosis

    Capturing Complex Behavior in Brain Imaging: Strategies and Instrumentation

    Get PDF
    Functional neuroimaging investigates the human brain through non-invasive recordings of brain signals or non-invasive stimulation. Traditionally, neuroimaging practitioners attempted to restrict the subject's behavior throughout the experiment to the point where it could be completely characterized by a few simple variables. Although this approach has its merits, it considerably limits the possibilities for investigating neural mechanisms underlying the organism's function under natural conditions. To overcome this limitation, researchers have increasingly focused on neuroimaging studies of subjects involved in complex ecologically-valid behavioral tasks. The shift from simple to complex behavior in neuroimaging studies brings along the demand for: (1) new instrumentation for handling the behavioral aspect of the experiment, and (2) new experimental designs that exploit the complexity of the participant's behavior instead of trying to suppress it.  The thesis comprises four publications that examine the capacity of video technology to provide new instrumentation and explore possibilities for new experimental designs utilizing rich behavioural information provided by video, in the context of magnetoencephalography (MEG) and transcranial magnetic stimulation (TMS) methods. Additionally, it introduces the Helsinki VideoMEG Project an open-source collaborative effort aimed at providing MEG practitioners with video recording and analysis tools.  The first part of the thesis (Publications I and II) examines the feasibility of augmenting TMS and MEG experiments with simultaneous synchronized video and audio recordings of the participant. The second part of the thesis (Publications III and IV) explores the possibility of using audio and video to link the participants in an MEG hyperscanning experiment simultaneous recording of MEG signals from two interacting subjects.  The results presented in this thesis demonstrate the feasibility of augmenting TMS and MEG experiments with synchronized video and audio recordings

    Sensorimotor Mapping With MEG: An Update on the Current State of Clinical Research and Practice With Considerations for Clinical Practice Guidelines

    Get PDF
    Published: November 2020In this article, we present the clinical indications and advances in the use of magnetoencephalography to map the primary sensorimotor (SM1) cortex in neurosurgical patients noninvasively. We emphasize the advantages of magnetoencephalography over sensorimotor mapping using functional magnetic resonance imaging. Recommendations to the referring physicians and the clinical magnetoencephalographers to achieve appropriate sensorimotor cortex mapping using magnetoencephalography are proposed. We finally provide some practical advice for the use of corticomuscular coherence, corticokinematic coherence, and mu rhythm suppression in this indication. Magnetoencephalography should now be considered as a method of reference for presurgical functional mapping of the sensorimotor cortex.X. De Ti ege is Post-doctorate Clinical Master Specialist at the Fonds de la Recherche Scientifique (FRS-FNRS, Brussels, Belgium). M. Bourguignon has been supported by the program Attract of Innoviris (Grant 2015-BB2B-10), by the Spanish Ministry of Economy and Competitiveness (Grant PSI2016- 77175-P), and by the Marie Sk1odowska-Curie Action of the European Commission (Grant 743562). H. Piitulainen has been supported by the Academy of Finland (Grants #266133 and #296240), the Jane and Aatos Erkko Foundation, and the Emil Aaltonen Foundation. The authors thank Professor Riitta Hari for her support in most of the research works published by the authors and presented in this article. The MEG project at the CUB H^opital Erasme is financially supported by the Fonds Erasme (Research convention “Les Voies du Savoir,” Fonds Erasme, Brussels, Belgium)

    Safe surgery for glioblastoma: Recent advances and modern challenges.

    Get PDF
    One of the major challenges during glioblastoma surgery is balancing between maximizing extent of resection and preventing neurological deficits. Several surgical techniques and adjuncts have been developed to help identify eloquent areas both preoperatively (fMRI, nTMS, MEG, DTI) and intraoperatively (imaging (ultrasound, iMRI), electrostimulation (mapping), cerebral perfusion measurements (fUS)), and visualization (5-ALA, fluoresceine)). In this review, we give an update of the state-of-the-art management of both primary and recurrent glioblastomas. We will review the latest surgical advances, challenges, and approaches that define the onco-neurosurgical practice in a contemporary setting and give an overview of the current prospective scientific efforts

    Cortical mapping of the neuronal circuits modulating the muscle tone. Introduction to the electrophysiological treatment of the spastic hand

    Get PDF
    L'objectiu d'aquest estudi es investigar l'organització cortical junt amb la connectivitat còrtico-subcortical en subjectes sans, com a estudi preliminar. Els mapes corticals s'han fet per TMS navegada, i els punts motors obtinguts s'han exportant per estudi tractogràfic i anàlisi de las seves connexions. El coneixement precís de la localització de l'àrea cortical motora primària i les seves connexions es la base per ser utilitzada en estudis posteriors de la reorganització cortical i sub-cortical en pacients amb infart cerebral. Aquesta reorganització es deguda a la neuroplasticitat i pot ser influenciada per els efectes neuromoduladors de la estimulació cerebral no invasiva.The purpose of this study is to investigate the motor cortex organisation together with the cortico-subcortical connectivity in healthy subjects, as a preliminary study. Cortical maps have been performed by navigated TMS and the motor points have been exported to DTI to study their subcortical connectivity. The precise knowledge of localization of the primary motor cortex area and its connectivity is the base to be used in later studies of cortical and subcortical re-organisation in stroke patients. This re-organisation is due to the neuroplascity and can be influenced by the neuromodulation effects of the non-invasive cerebral stimulation therapy by TMS

    Transcranial magnetic stimulation and EEG in studies of brain function

    Get PDF
    Transcranial magnetic stimulation (TMS) combined with electroencephalography (EEG) is a multimodal technique, with a temporal resolution of submilliseconds, for studying cortical excitability and connectivity. When TMS is combined with neuronavigation, resulting in so-called navigated TMS (nTMS), the technique becomes very powerful. However, despite the potential of TMS–EEG, its use for studying lateral areas has been restricted because the TMS pulse induces strong muscle artifacts, making the EEG data useless for further analyses. In this Thesis, methods for analyzing TMS-evoked EEG data from lateral areas are introduced. First, TMS–EEG is used to study Broca's area and dorsal premotor cortex. Due to the fact that those areas are close to cranial muscles, their stimulation evokes large muscle artifacts in EEG recordings. The behavior of the artifacts is described in detail. Two approaches to deal with large artifacts are presented. In the first approach, independent component analysis (ICA) is used. Here, FastICA algorithm is modified to make the search of the components more robust and easier, allowing one to get more stable results. The second approach presents methods for suppressing the artifacts rather than removing them. These methods were combined with source localization showing that the artifact suppression is efficient. The methods were tested with both real and simulated data, suggesting they are useful for artifact correction. For a better understanding of the effects of repetitive nTMS during naming tasks and the cortical organization of speech in general, here another study is introduced to understand the sensitivity of object and action naming tasks to repetitive nTMS. The distributions of cortical sites, where repetitive nTMS produced naming errors during both tasks, are compared. Thus, it is shown how this study can impact on both cognitive neuroscience and clinical practice. In the last part, the beamformer method is improved to study source localization, which makes it a robust method to study time-correlated sources. In this Thesis, I discuss how all these methods together can contribute to study brain connectivity of language and lateral areas with TMS–EEG, opening new possibilities for basic research and clinical applications
    corecore