436 research outputs found

    On the Complexity of the Equivalence Problem for Probabilistic Automata

    Full text link
    Checking two probabilistic automata for equivalence has been shown to be a key problem for efficiently establishing various behavioural and anonymity properties of probabilistic systems. In recent experiments a randomised equivalence test based on polynomial identity testing outperformed deterministic algorithms. In this paper we show that polynomial identity testing yields efficient algorithms for various generalisations of the equivalence problem. First, we provide a randomized NC procedure that also outputs a counterexample trace in case of inequivalence. Second, we show how to check for equivalence two probabilistic automata with (cumulative) rewards. Our algorithm runs in deterministic polynomial time, if the number of reward counters is fixed. Finally we show that the equivalence problem for probabilistic visibly pushdown automata is logspace equivalent to the Arithmetic Circuit Identity Testing problem, which is to decide whether a polynomial represented by an arithmetic circuit is identically zero.Comment: technical report for a FoSSaCS'12 pape

    Cryptautomata: definition, cryptanalysis, example

    Get PDF
    This conference paper is an extended abstract of a recent article in Prikladnaya Diskretnaya Matematika (2017, No.36), where we presented the definition of the cryptautomata and described some cryptanalysis techniques for them. In cryptosystems, the cryptautomata are widely used as its primitives including cryptographic generators, s-boxes, filters, combiners, key hash functions as well as symmetric and public-key ciphers, and digital signature schemes. A cryptautomaton is defined as a class C of automata networks of a fixed structure N constructed by means of the series, parallel, and feedback connection operations over initial finite automata (finite state machines) with transition and output functions taken from some predetermined functional classes. A cryptautomaton key can include initial states, transition and output functions of some components in N. Choosing a certain key k produces a certain network Nk from C to be a new cryptographic algorithm. In case of invertibility of Nk, this algorithm can be used for encryption. The operation (functioning) of any network Nk in the discrete time is described by the canonical system of equations of its automaton. The structure of Nk is described by the union of canonical systems of equations of its components. The cryptanalysis problems for a cryptautomaton are considered as the problems of solving the operational or structural system of equations of Nk with the corresponding unknowns that are key k variables and (or) plaintexts (input sequences). For solving such a system E, the method DSS is used. It is the iteration of the following three actions: 1) E is Divided into subsystems E' and E ", where E' is easy solvable; 2) E' is Solved; 3) the solutions of E' are Substituted into E'' by turns. The definition and cryptanalysis of a cryptautomaton are illustrated by giving the example of the autonomous alternating control cryptautomaton. It is a generalization of the LFSR-based cryptographic alternating step generator. We present a number of attacks on this cryptautomaton with the states or output functions of its components as a key

    A system-theoretic framework for privacy preservation in continuous-time multiagent dynamics

    Full text link
    In multiagent dynamical systems, privacy protection corresponds to avoid disclosing the initial states of the agents while accomplishing a distributed task. The system-theoretic framework described in this paper for this scope, denoted dynamical privacy, relies on introducing output maps which act as masks, rendering the internal states of an agent indiscernible by the other agents as well as by external agents monitoring all communications. Our output masks are local (i.e., decided independently by each agent), time-varying functions asymptotically converging to the true states. The resulting masked system is also time-varying, and has the original unmasked system as its limit system. When the unmasked system has a globally exponentially stable equilibrium point, it is shown in the paper that the masked system has the same point as a global attractor. It is also shown that existence of equilibrium points in the masked system is not compatible with dynamical privacy. Application of dynamical privacy to popular examples of multiagent dynamics, such as models of social opinions, average consensus and synchronization, is investigated in detail.Comment: 38 pages, 4 figures, extended version of arXiv preprint arXiv:1808.0808

    Defining an approximation to formally verify cryptographic protocols

    Get PDF
    Electronic forms of communication are abundant in todays world, and much emphasis is placed on these methods of communication in every day life. In order to guarantee the secrecy and authenticity of information exchanged, it is vital to formally verify the cryptographic protocols used in these forms of communications. This verification does, however, present many challenges. The systems to verify are infinite, with an infinite number of sessions and of p articipants. As if this was not enough, there is also a reactive element to deal with: th e intruder. The intruder will attack the protocol to achieve his goal: usurping identity, stealing confidential information, etc. His behavior is unpredictable! This thesis describes a method of verification based 011 the verification of systems by approximation. Starting from an initial configuration of the network, an overapproximation of the set of messages exchanged is automatically computed. Secrecy and authentication properties can then be checked on the approximated system. Starting from an existing semi-automatic proof method developed by Genet and Klay, an automatic solution is developed. Starting from an existing semi-automatic proof method developed by Genet and Klay, an automatic solution is developed. This thesis defines a particular approximation function that can be generated automatically and that guarantees that the computation of the approximated system terminates. Th e verification by approximation only tells if properties are verified. When the verification fails no conclusion can be drawn on the property. Thus, this thesis also shows how the approximation technique can easily be combined with another verification technique to combine the strengths of both approaches. Finally, the tool developed to validate these developments and the results of cryptographic protocol verifications carried out in the course of this research are included

    Cellular Automata

    Get PDF
    Modelling and simulation are disciplines of major importance for science and engineering. There is no science without models, and simulation has nowadays become a very useful tool, sometimes unavoidable, for development of both science and engineering. The main attractive feature of cellular automata is that, in spite of their conceptual simplicity which allows an easiness of implementation for computer simulation, as a detailed and complete mathematical analysis in principle, they are able to exhibit a wide variety of amazingly complex behaviour. This feature of cellular automata has attracted the researchers' attention from a wide variety of divergent fields of the exact disciplines of science and engineering, but also of the social sciences, and sometimes beyond. The collective complex behaviour of numerous systems, which emerge from the interaction of a multitude of simple individuals, is being conveniently modelled and simulated with cellular automata for very different purposes. In this book, a number of innovative applications of cellular automata models in the fields of Quantum Computing, Materials Science, Cryptography and Coding, and Robotics and Image Processing are presented

    Mean asymptotic behaviour of radix-rational sequences and dilation equations (Extended version)

    Get PDF
    The generating series of a radix-rational sequence is a rational formal power series from formal language theory viewed through a fixed radix numeration system. For each radix-rational sequence with complex values we provide an asymptotic expansion for the sequence of its Ces\`aro means. The precision of the asymptotic expansion depends on the joint spectral radius of the linear representation of the sequence; the coefficients are obtained through some dilation equations. The proofs are based on elementary linear algebra

    Studying the effects of adding spatiality to a process algebra model

    No full text
    We use NetLogo to create simulations of two models of disease transmission originally expressed in WSCCS. This allows us to introduce spatiality into the models and explore the consequences of having different contact structures among the agents. In previous work, mean field equations were derived from the WSCCS models, giving a description of the aggregate behaviour of the overall population of agents. These results turned out to differ from results obtained by another team using cellular automata models, which differ from process algebra by being inherently spatial. By using NetLogo we are able to explore whether spatiality, and resulting differences in the contact structures in the two kinds of models, are the reason for this different results. Our tentative conclusions, based at this point on informal observations of simulation results, are that space does indeed make a big difference. If space is ignored and individuals are allowed to mix randomly, then the simulations yield results that closely match the mean field equations, and consequently also match the associated global transmission terms (explained below). At the opposite extreme, if individuals can only contact their immediate neighbours, the simulation results are very different from the mean field equations (and also do not match the global transmission terms). These results are not surprising, and are consistent with other cellular automata-based approaches. We found that it was easy and convenient to implement and simulate the WSCCS models within NetLogo, and we recommend this approach to anyone wishing to explore the effects of introducing spatiality into a process algebra model
    corecore