85 research outputs found

    Pattern Classification of Large-Scale Functional Brain Networks: Identification of Informative Neuroimaging Markers for Epilepsy

    Get PDF
    The accurate prediction of general neuropsychiatric disorders, on an individual basis, using resting-state functional magnetic resonance imaging (fMRI) is a challenging task of great clinical significance. Despite the progress to chart the differences between the healthy controls and patients at the group level, the pattern classification of functional brain networks across individuals is still less developed. In this paper we identify two novel neuroimaging measures that prove to be strongly predictive neuroimaging markers in pattern classification between healthy controls and general epileptic patients. These measures characterize two important aspects of the functional brain network in a quantitative manner: (i) coordinated operation among spatially distributed brain regions, and (ii) the asymmetry of bilaterally homologous brain regions, in terms of their global patterns of functional connectivity. This second measure offers a unique understanding of brain asymmetry at the network level, and, to the best of our knowledge, has not been previously used in pattern classification of functional brain networks. Using modern pattern-recognition approaches like sparse regression and support vector machine, we have achieved a cross-validated classification accuracy of 83.9% (specificity: 82.5%; sensitivity: 85%) across individuals from a large dataset consisting of 180 healthy controls and epileptic patients. We identified significantly changed functional pathways and subnetworks in epileptic patients that underlie the pathophysiological mechanism of the impaired cognitive functions. Specifically, we find that the asymmetry of brain operation for epileptic patients is markedly enhanced in temporal lobe and limbic system, in comparison with healthy individuals. The present study indicates that with specifically designed informative neuroimaging markers, resting-state fMRI can serve as a most promising tool for clinical diagnosis, and also shed light onto the physiology behind complex neuropsychiatric disorders. The systematic approaches we present here are expected to have wider applications in general neuropsychiatric disorders

    State-space model with deep learning for functional dynamics estimation in resting-state fMRI

    Get PDF
    Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach

    Machine learning with neuroimaging data to identify autism spectrum disorder: a systematic review and meta-analysis

    Get PDF
    Purpose: Autism Spectrum Disorder (ASD) is diagnosed through observation or interview assessments, which is time-consuming, subjective, and with questionable validity and reliability. Thus, we aimed to evaluate the role of machine learning (ML) with neuroimaging data to provide a reliable classification of ASD. Methods: A systematic search of PubMed, Scopus, and Embase was conducted to identify relevant publications. Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) was used to assess the studies’ quality. A bivariate random-effects model meta-analysis was employed to evaluate the pooled sensitivity, the pooled specificity, and the diagnostic performance through the hierarchical summary receiver operating characteristic (HSROC) curve of ML with neuroimaging data in classifying ASD. Meta-regression was also performed. Results: Forty-four studies (5697 ASD and 6013 typically developing individuals [TD] in total) were included in the quantitative analysis. The pooled sensitivity for differentiating ASD from TD individuals was 86.25 95% confidence interval [CI] (81.24, 90.08), while the pooled specificity was 83.31 95% CI (78.12, 87.48) with a combined area under the HSROC (AUC) of 0.889. Higgins I2 (> 90%) and Cochran’s Q (p < 0.0001) suggest a high degree of heterogeneity. In the bivariate model meta-regression, a higher pooled specificity was observed in studies not using a brain atlas (90.91 95% CI [80.67, 96.00], p = 0.032). In addition, a greater pooled sensitivity was seen in studies recruiting both males and females (89.04 95% CI [83.84, 92.72], p = 0.021), and combining imaging modalities (94.12 95% [85.43, 97.76], p = 0.036). Conclusion: ML with neuroimaging data is an exciting prospect in detecting individuals with ASD but further studies are required to improve its reliability for usage in clinical practice

    Automatic Autism Spectrum Disorder Detection Using Artificial Intelligence Methods with MRI Neuroimaging: A Review

    Full text link
    Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests. Among these methods, magnetic resonance imaging (MRI) imaging modalities are of paramount importance to physicians. Clinicians rely on MRI modalities to diagnose ASD accurately. The MRI modalities are non-invasive methods that include functional (fMRI) and structural (sMRI) neuroimaging methods. However, the process of diagnosing ASD with fMRI and sMRI for specialists is often laborious and time-consuming; therefore, several computer-aided design systems (CADS) based on artificial intelligence (AI) have been developed to assist the specialist physicians. Conventional machine learning (ML) and deep learning (DL) are the most popular schemes of AI used for diagnosing ASD. This study aims to review the automated detection of ASD using AI. We review several CADS that have been developed using ML techniques for the automated diagnosis of ASD using MRI modalities. There has been very limited work on the use of DL techniques to develop automated diagnostic models for ASD. A summary of the studies developed using DL is provided in the appendix. Then, the challenges encountered during the automated diagnosis of ASD using MRI and AI techniques are described in detail. Additionally, a graphical comparison of studies using ML and DL to diagnose ASD automatically is discussed. We conclude by suggesting future approaches to detecting ASDs using AI techniques and MRI neuroimaging
    • …
    corecore