8,442 research outputs found

    Functional Bandits

    Full text link
    We introduce the functional bandit problem, where the objective is to find an arm that optimises a known functional of the unknown arm-reward distributions. These problems arise in many settings such as maximum entropy methods in natural language processing, and risk-averse decision-making, but current best-arm identification techniques fail in these domains. We propose a new approach, that combines functional estimation and arm elimination, to tackle this problem. This method achieves provably efficient performance guarantees. In addition, we illustrate this method on a number of important functionals in risk management and information theory, and refine our generic theoretical results in those cases

    The market for protection and the origin of the state

    Get PDF
    We examine a stark setting in which security or protection can be provided by self-governing groups or by for-profit entrepreneurs (kings, kleptocrats, or mafia dons). Though selfgovernance is best for the population, it faces problems of long-term viability. Typically, in providing security the equilibrium market structure involves competing lords, a condition that leads to a tragedy of coercion: all the savings from the provision of collective protection are dissipated and welfare can be as low as, or even lower than, in the absence of the state

    Generalized models as a universal approach to the analysis of nonlinear dynamical systems

    Full text link
    We present a universal approach to the investigation of the dynamics in generalized models. In these models the processes that are taken into account are not restricted to specific functional forms. Therefore a single generalized models can describe a class of systems which share a similar structure. Despite this generality, the proposed approach allows us to study the dynamical properties of generalized models efficiently in the framework of local bifurcation theory. The approach is based on a normalization procedure that is used to identify natural parameters of the system. The Jacobian in a steady state is then derived as a function of these parameters. The analytical computation of local bifurcations using computer algebra reveals conditions for the local asymptotic stability of steady states and provides certain insights on the global dynamics of the system. The proposed approach yields a close connection between modelling and nonlinear dynamics. We illustrate the investigation of generalized models by considering examples from three different disciplines of science: a socio-economic model of dynastic cycles in china, a model for a coupled laser system and a general ecological food web.Comment: 15 pages, 2 figures, (Fig. 2 in color
    • …
    corecore