238 research outputs found

    Coronary atherosclerosis and wall shear stress

    Get PDF

    Coronary atherosclerosis and wall shear stress

    Get PDF

    Pressure drop and recovery in cases of cardiovascular disease: a computational study

    Get PDF
    The presence of disease in the cardiovascular system results in changes in flow and pressure patterns. Increased resistance to the flow observed in cases of aortic valve and coronary artery disease can have as a consequence abnormally high pressure gradients, which may lead to overexertion of the heart muscle, limited tissue perfusion and tissue damage. In the past, computational fluid dynamics (CFD) methods have been used coupled with medical imaging data to study haemodynamics, and it has been shown that CFD has great potential as a way to study patient-specific cases of cardiovascular disease in vivo, non-invasively, in great detail and at low cost. CFD can be particularly useful in evaluating the effectiveness of new diagnostic and treatment techniques, especially at early ‘concept’ stages. The main aim of this thesis is to use CFD to investigate the relationship between pressure and flow in cases of disease in the coronary arteries and the aortic valve, with the purpose of helping improve diagnosis and treatment, respectively. A transitional flow CFD model is used to investigate the phenomenon of pressure recovery in idealised models of aortic valve stenosis. Energy lost as turbulence in the wake of a diseased valve hinders pressure recovery, which occurs naturally when no energy losses are observed. A “concept” study testing the potential of a device that could maximise pressure recovery to reduce the pressure load on the heart muscle was conducted. The results indicate that, under certain conditions, such a device could prove useful. Fully patient-specific CFD studies of the coronary arteries are fewer than studies in larger vessels, mostly due to past limitations in the imaging and velocity data quality. A new method to reconstruct coronary anatomy from optical coherence tomography (OCT) data is presented in the thesis. The resulting models were combined with invasively acquired pressure and flow velocity data in transient CFD simulations, in order to test the ability of CFD to match the invasively measured pressure drop. A positive correlation and no bias were found between the calculated and measured results. The use of lower resolution reconstruction methods resulted in no correlation between the calculated and measured results, highlighting the importance of anatomical accuracy in the effectiveness of the CFD model. However, it was considered imperative that the limitations of CFD in predicting pressure gradients be further explored. It was found that the CFD-derived pressure drop is sensitive to changes in the volumetric flow rate, while bench-top experiments showed that the estimation of volumetric flow rate from invasively measured velocity data is subject to errors and uncertainties that may have a random effect on the CFD pressure result. This study demonstrated that the relationship between geometry, pressure and flow can be used to evaluate new diagnostic and treatment methods. In the case of aortic stenosis, further experimental work is required to turn the concept of a pressure recovery device into a potential clinical tool. In the coronary study it was shown that, though CFD has great power as a study tool, its limitations, especially those pertaining to the volumetric flow rate boundary condition, must be further studied and become fully understood before CFD can be reliably used to aid diagnosis in clinical practice.Open Acces

    Intracoronary ultrasound

    Get PDF
    Knowledge of the characteristics of the atherosclerotic plaque (eccentricity, composition, effect of initial dilatation or ablation) and of the flow modifications induced by a coronary stenosis would establish more precisely the severity of the lesion under evaluation, improve the planning and guidance of therapeutic interventions, and facilitate the detection of subsequent complications. The miniaturization of the ultrasound catheters a11d the de

    Coronary atherosclerosis and wall shear stress: Towards application of CT angiography

    Get PDF
    __Abstract__ Vulnerable plaques are characterized by the presence of a large lipid pool, which is separated from the lumen by a thin fibrous cap, often infiltrated by macro phages [Schaar-04]. Rupture of this fibrous cap is generally regarded as one of the main underlying causes of cardiovascular events [Fa!k-95]. Rupture occurs when the stresses in the cap of the plaque exceed the strength of the cap [Lee-93]. The composition of the plaque plays a crucial role in the rupture process: it determines how blood pressure is translated into stresses in the wall, and composition also determines the strength of the tissue [Loree-94, Holzapfel-05]

    Reconstruction of coronary arteries from X-ray angiography: A review.

    Get PDF
    Despite continuous progress in X-ray angiography systems, X-ray coronary angiography is fundamentally limited by its 2D representation of moving coronary arterial trees, which can negatively impact assessment of coronary artery disease and guidance of percutaneous coronary intervention. To provide clinicians with 3D/3D+time information of coronary arteries, methods computing reconstructions of coronary arteries from X-ray angiography are required. Because of several aspects (e.g. cardiac and respiratory motion, type of X-ray system), reconstruction from X-ray coronary angiography has led to vast amount of research and it still remains as a challenging and dynamic research area. In this paper, we review the state-of-the-art approaches on reconstruction of high-contrast coronary arteries from X-ray angiography. We mainly focus on the theoretical features in model-based (modelling) and tomographic reconstruction of coronary arteries, and discuss the evaluation strategies. We also discuss the potential role of reconstructions in clinical decision making and interventional guidance, and highlight areas for future research

    The importance of three dimensional coronary artery reconstruction accuracy when computing virtual fractional flow reserve from invasive angiography.

    Get PDF
    Three dimensional (3D) coronary anatomy, reconstructed from coronary angiography (CA), is now being used as the basis to compute ‘virtual’ fractional flow reserve (vFFR), and thereby guide treatment decisions in patients with coronary artery disease (CAD). Reconstruction accuracy is therefore important. Yet the methods required remain poorly validated. Furthermore, the magnitude of vFFR error arising from reconstruction is unkown. We aimed to validate a method for 3D CA reconstruction and determine the effect this had upon the accuracy of vFFR. Clinically realistic coronary phantom models were created comprosing seven standard stenoses in aluminium and 15 patient-based 3D-printed, imaged with CA, three times, according to standard clinical protocols, yielding 66 datasets. Each was reconstructed using epipolar line projection and intersection. All reconstructions were compared against the real phantom models in terms of minimal lumen diameter, centreline and surface similarity. 3D-printed reconstructions (n = 45) and the reference files from which they were printed underwent vFFR computation, and the results were compared. The average error in reconstructing minimum lumen diameter (MLD) was 0.05 (± 0.03 mm) which was < 1% (95% CI 0.13–1.61%) compared with caliper measurement. Overall surface similarity was excellent (Hausdorff distance 0.65 mm). Errors in 3D CA reconstruction accounted for an error in vFFR of ± 0.06 (Bland Altman 95% limits of agreement). Errors arising from the epipolar line projection method used to reconstruct 3D coronary anatomy from CA are small but contribute to clinically relevant errors when used to compute vFFR

    Intravascular Ultrasound

    Get PDF
    Intravascular ultrasound (IVUS) is a cardiovascular imaging technology using a specially designed catheter with a miniaturized ultrasound probe for the assessment of vascular anatomy with detailed visualization of arterial layers. Over the past two decades, this technology has developed into an indispensable tool for research and clinical practice in cardiovascular medicine, offering the opportunity to gather diagnostic information about the process of atherosclerosis in vivo, and to directly observe the effects of various interventions on the plaque and arterial wall. This book aims to give a comprehensive overview of this rapidly evolving technique from basic principles and instrumentation to research and clinical applications with future perspectives
    corecore