81 research outputs found

    BPM2DDD: A Systematic Process for Identifying Domains from Business Processes Models

    Get PDF
    Domain-driven design is one of the most used approaches for identifying microservice architectures, which should be built around business capabilities. There are a number of documentation with principles and patterns for its application. However, despite its increasing use there is still a lack of systematic approaches for creating the context maps that will be used to design the microservices. This article presents BPM2DDD, a systematic approach for identification of bounded contexts and their relationships based on the analysis of business processes models, which provide a business view of an organisation. We present an example of its application in a real business process, which has also be used to perform a comparative application with external analysts. The technique has been applied to a real project in the department of transport of a Brazilian state capital, and has been incorporated into the software development process employed by them to develop their new system.</jats:p

    16th SC@RUG 2019 proceedings 2018-2019

    Get PDF

    ICSEA 2021: the sixteenth international conference on software engineering advances

    Get PDF
    The Sixteenth International Conference on Software Engineering Advances (ICSEA 2021), held on October 3 - 7, 2021 in Barcelona, Spain, continued a series of events covering a broad spectrum of software-related topics. The conference covered fundamentals on designing, implementing, testing, validating and maintaining various kinds of software. The tracks treated the topics from theory to practice, in terms of methodologies, design, implementation, testing, use cases, tools, and lessons learnt. The conference topics covered classical and advanced methodologies, open source, agile software, as well as software deployment and software economics and education. The conference had the following tracks: Advances in fundamentals for software development Advanced mechanisms for software development Advanced design tools for developing software Software engineering for service computing (SOA and Cloud) Advanced facilities for accessing software Software performance Software security, privacy, safeness Advances in software testing Specialized software advanced applications Web Accessibility Open source software Agile and Lean approaches in software engineering Software deployment and maintenance Software engineering techniques, metrics, and formalisms Software economics, adoption, and education Business technology Improving productivity in research on software engineering Trends and achievements Similar to the previous edition, this event continued to be very competitive in its selection process and very well perceived by the international software engineering community. As such, it is attracting excellent contributions and active participation from all over the world. We were very pleased to receive a large amount of top quality contributions. We take here the opportunity to warmly thank all the members of the ICSEA 2021 technical program committee as well as the numerous reviewers. The creation of such a broad and high quality conference program would not have been possible without their involvement. We also kindly thank all the authors that dedicated much of their time and efforts to contribute to the ICSEA 2021. We truly believe that thanks to all these efforts, the final conference program consists of top quality contributions. This event could also not have been a reality without the support of many individuals, organizations and sponsors. We also gratefully thank the members of the ICSEA 2021 organizing committee for their help in handling the logistics and for their work that is making this professional meeting a success. We hope the ICSEA 2021 was a successful international forum for the exchange of ideas and results between academia and industry and to promote further progress in software engineering research

    Toward Data-Driven Discovery of Software Vulnerabilities

    Get PDF
    Over the years, Software Engineering, as a discipline, has recognized the potential for engineers to make mistakes and has incorporated processes to prevent such mistakes from becoming exploitable vulnerabilities. These processes span the spectrum from using unit/integration/fuzz testing, static/dynamic/hybrid analysis, and (automatic) patching to discover instances of vulnerabilities to leveraging data mining and machine learning to collect metrics that characterize attributes indicative of vulnerabilities. Among these processes, metrics have the potential to uncover systemic problems in the product, process, or people that could lead to vulnerabilities being introduced, rather than identifying specific instances of vulnerabilities. The insights from metrics can be used to support developers and managers in making decisions to improve the product, process, and/or people with the goal of engineering secure software. Despite empirical evidence of metrics\u27 association with historical software vulnerabilities, their adoption in the software development industry has been limited. The level of granularity at which the metrics are defined, the high false positive rate from models that use the metrics as explanatory variables, and, more importantly, the difficulty in deriving actionable intelligence from the metrics are often cited as factors that inhibit metrics\u27 adoption in practice. Our research vision is to assist software engineers in building secure software by providing a technique that generates scientific, interpretable, and actionable feedback on security as the software evolves. In this dissertation, we present our approach toward achieving this vision through (1) systematization of vulnerability discovery metrics literature, (2) unsupervised generation of metrics-informed security feedback, and (3) continuous developer-in-the-loop improvement of the feedback. We systematically reviewed the literature to enumerate metrics that have been proposed and/or evaluated to be indicative of vulnerabilities in software and to identify the validation criteria used to assess the decision-informing ability of these metrics. In addition to enumerating the metrics, we implemented a subset of these metrics as containerized microservices. We collected the metric values from six large open-source projects and assessed metrics\u27 generalizability across projects, application domains, and programming languages. We then used an unsupervised approach from literature to compute threshold values for each metric and assessed the thresholds\u27 ability to classify risk from historical vulnerabilities. We used the metrics\u27 values, thresholds, and interpretation to provide developers natural language feedback on security as they contributed changes and used a survey to assess their perception of the feedback. We initiated an open dialogue to gain an insight into their expectations from such feedback. In response to developer comments, we assessed the effectiveness of an existing vulnerability discovery approach—static analysis—and that of vulnerability discovery metrics in identifying risk from vulnerability contributing commits
    • …
    corecore