4,348 research outputs found

    Improved shaping approach to the preliminary design of low-thrust trajectories

    Get PDF
    This paper presents a general framework for the development of shape-based approaches to low-thrust trajectory design. A novel shaping method, based on a three-dimensional description of the trajectory in spherical coordinates, is developed within this general framework. Both the exponential sinusoid and the inverse polynomial shaping are demonstrated to be particular two-dimensional cases of the spherical one. The pseudoequinoctial shaping is revisited within the new framework, and the nonosculating nature of the pseudoequinoctial elements is analyzed. A two step approach is introduced to solve the time of flight constraint, related to the design of low-thrust arcs with boundary constraints for both spherical and pseudoequinoctial shaping. The solution derived from the shaping approach is improved with a feedback linear-quadratic controller and compared against a direct collocation method based on finite elements in time. The new shaping approach and the combination of shaping and linear-quadratic controller are tested on three case studies: a mission to Mars, a mission to asteroid 1989ML, a mission to comet Tempel-1, and a mission to Neptune

    On Projection-Based Model Reduction of Biochemical Networks-- Part II: The Stochastic Case

    Full text link
    In this paper, we consider the problem of model order reduction of stochastic biochemical networks. In particular, we reduce the order of (the number of equations in) the Linear Noise Approximation of the Chemical Master Equation, which is often used to describe biochemical networks. In contrast to other biochemical network reduction methods, the presented one is projection-based. Projection-based methods are powerful tools, but the cost of their use is the loss of physical interpretation of the nodes in the network. In order alleviate this drawback, we employ structured projectors, which means that some nodes in the network will keep their physical interpretation. For many models in engineering, finding structured projectors is not always feasible; however, in the context of biochemical networks it is much more likely as the networks are often (almost) monotonic. To summarise, the method can serve as a trade-off between approximation quality and physical interpretation, which is illustrated on numerical examples.Comment: Submitted to the 53rd CD

    DNA looping: the consequences and its control

    Full text link
    The formation of DNA loops by proteins and protein complexes is ubiquitous to many fundamental cellular processes, including transcription, recombination, and replication. Here we review recent advances in understanding the properties of DNA looping in its natural context and how they propagate to the cellular behavior through gene regulation. The results of connecting the molecular properties with cellular physiology indicate that looping of DNA in vivo is much more complex and easier than predicted from current models and reveals a wealth of previously unappreciated details

    Bayesian and regularization approaches to multivariable linear system identification: the role of rank penalties

    Full text link
    Recent developments in linear system identification have proposed the use of non-parameteric methods, relying on regularization strategies, to handle the so-called bias/variance trade-off. This paper introduces an impulse response estimator which relies on an â„“2\ell_2-type regularization including a rank-penalty derived using the log-det heuristic as a smooth approximation to the rank function. This allows to account for different properties of the estimated impulse response (e.g. smoothness and stability) while also penalizing high-complexity models. This also allows to account and enforce coupling between different input-output channels in MIMO systems. According to the Bayesian paradigm, the parameters defining the relative weight of the two regularization terms as well as the structure of the rank penalty are estimated optimizing the marginal likelihood. Once these hyperameters have been estimated, the impulse response estimate is available in closed form. Experiments show that the proposed method is superior to the estimator relying on the "classic" â„“2\ell_2-regularization alone as well as those based in atomic and nuclear norm.Comment: to appear in IEEE Conference on Decision and Control, 201

    Matchgates and classical simulation of quantum circuits

    Full text link
    Let G(A,B) denote the 2-qubit gate which acts as the 1-qubit SU(2) gates A and B in the even and odd parity subspaces respectively, of two qubits. Using a Clifford algebra formalism we show that arbitrary uniform families of circuits of these gates, restricted to act only on nearest neighbour (n.n.) qubit lines, can be classically efficiently simulated. This reproduces a result originally proved by Valiant using his matchgate formalism, and subsequently related by others to free fermionic physics. We further show that if the n.n. condition is slightly relaxed, to allowing the same gates to act only on n.n. and next-n.n. qubit lines, then the resulting circuits can efficiently perform universal quantum computation. From this point of view, the gap between efficient classical and quantum computational power is bridged by a very modest use of a seemingly innocuous resource (qubit swapping). We also extend the simulation result above in various ways. In particular, by exploiting properties of Clifford operations in conjunction with the Jordan-Wigner representation of a Clifford algebra, we show how one may generalise the simulation result above to provide further classes of classically efficiently simulatable quantum circuits, which we call Gaussian quantum circuits.Comment: 18 pages, 2 figure

    Hadronization revisited : the dynamics behind hadro-chemical equilibrium

    Get PDF
    The multiplicity of hadronic species created in elementary, and in nucleus-nucleus collisions, are known to be well reproduced by the statistical hadronization model, in its canonical and grand-canonical versions.To understand the origin of the implied equilibrium we revisit the hadronization models developed for e+e- annihilation to hadrons which imply spatial color pre-confinement clusters forming at the end of the pQCD evolution, which decays into on-shell hadrons/resonances. The classical ensemble description arises as a consequence of decoherence and phase space dominance during cluster formation, and decay.For A+A collisions we assume that hadronization occurs from similar singlet clusters which will overlap spatially owing to the extreme density. This is imaged in the transition to the grand-canonical ensemble.This transition sets in with increasing A and collision centrality. It can be described by a percolation model
    • …
    corecore