8,700 research outputs found

    Arctic in Rapid Transition (ART) : science plan

    Get PDF
    The Arctic is undergoing rapid transformations that have brought the Arctic Ocean to the top of international political agendas. Predicting future conditions of the Arctic Ocean system requires scientific knowledge of its present status as well as a process-based understanding of the mechanisms of change. The Arctic in Rapid Transition (ART) initiative is an integrative, international, interdisciplinary pan-Arctic program to study changes and feedbacks among the physical and biogeochemical components of the Arctic Ocean and their ultimate impacts on biological productivity. The goal of ART is to develop priorities for Arctic marine science over the next decade. Three overarching questions form the basis of the ART science plan: (1) How were past transitions in sea ice connected to energy flows, elemental cycling, biological diversity and productivity, and how do these compare to present and projected shifts? (2) How will biogeochemical cycling respond to transitions in terrestrial, gateway and shelf-to-basin fluxes? (3) How do Arctic Ocean organisms and ecosystems respond to environmental transitions including temperature, stratification, ice conditions, and pH? The integrated approach developed to answer the ART key scientific questions comprises: (a) process studies and observations to reveal mechanisms, (b) the establishment of links to existing monitoring programs, (c) the evaluation of geological records to extend time-series, and (d) the improvement of our modeling capabilities of climate-induced transitions. In order to develop an implementation plan for the ART initiative, an international and interdisciplinary workshop is currently planned to take place in Winnipeg, Canada in October 2010

    Developing alternatives for optimal representation of seafloor habitats and associated communities in Stellwagen Bank National Marine Sanctuary

    Get PDF
    The implementation of various types of marine protected areas is one of several management tools available for conserving representative examples of the biological diversity within marine ecosystems in general and National Marine Sanctuaries in particular. However, deciding where and how many sites to establish within a given area is frequently hampered by incomplete knowledge of the distribution of organisms and an understanding of the potential tradeoffs that would allow planners to address frequently competing interests in an objective manner. Fortunately, this is beginning to change. Recent studies on the continental shelf of the northeastern United States suggest that substrate and water mass characteristics are highly correlated with the composition of benthic communities and may therefore, serve as proxies for the distribution of biological biodiversity. A detailed geo-referenced interpretative map of major sediment types within Stellwagen Bank National Marine Sanctuary (SBNMS) has recently been developed, and computer-aided decision support tools have reached new levels of sophistication. We demonstrate the use of simulated annealing, a type of mathematical optimization, to identify suites of potential conservation sites within SBNMS that equally represent 1) all major sediment types and 2) derived habitat types based on both sediment and depth in the smallest amount of space. The Sanctuary was divided into 3610 0.5 min2 sampling units. Simulations incorporated constraints on the physical dispersion of sampling units to varying degrees such that solutions included between one and four site clusters. Target representation goals were set at 5, 10, 15, 20, and 25 percent of each sediment type, and 10 and 20 percent of each habitat type. Simulations consisted of 100 runs, from which we identified the best solution (i.e., smallest total area) and four nearoptimal alternates. We also plotted total instances in which each sampling unit occurred in solution sets of the 100 runs as a means of gauging the variety of spatial configurations available under each scenario. Results suggested that the total combined area needed to represent each of the sediment types in equal proportions was equal to the percent representation level sought. Slightly larger areas were required to represent all habitat types at the same representation levels. Total boundary length increased in direct proportion to the number of sites at all levels of representation for simulations involving sediment and habitat classes, but increased more rapidly with number of sites at higher representation levels. There were a large number of alternate spatial configurations at all representation levels, although generally fewer among one and two versus three- and four-site solutions. These differences were less pronounced among simulations targeting habitat representation, suggesting that a similar degree of flexibility is inherent in the spatial arrangement of potential protected area systems containing one versus several sites for similar levels of habitat representation. We attribute these results to the distribution of sediment and depth zones within the Sanctuary, and to the fact that even levels of representation were sought in each scenario. (PDF contains 33 pages.

    INTREPID Tephra-II: - 1307F

    Get PDF
    The INTREPID Tephra project, “Enhancing tephrochronology as a global research tool through improved fingerprinting and correlation techniques and uncertainty modelling”, was an overarching project of the international community of tephrochronologists of the International Focus Group on Tephrochronology and Volcanism (INTAV), which in turn lies under the auspices of INQUA’s Stratigraphy and Chronology Commission (SACCOM). INTREPID’s main aim has been to advance our understanding and efficacy in fingerprinting, correlating, and dating techniques, and to evaluate and quantify uncertainty in tephrochronology, and thus enhance our ability to provide the best possible linking, dating and synchronising tool for a wide range of Quaternary research projects around the world. A second aim has been to re-build the global capability of tephrochronology for future research endeavours through mentoring and encouragement of emerging researchers in the discipline
    • …
    corecore