6,965 research outputs found

    Physics-based passivity-preserving parameterized model order reduction for PEEC circuit analysis

    Get PDF
    The decrease of integrated circuit feature size and the increase of operating frequencies require 3-D electromagnetic methods, such as the partial element equivalent circuit (PEEC) method, for the analysis and design of high-speed circuits. Very large systems of equations are often produced by 3-D electromagnetic methods, and model order reduction (MOR) methods have proven to be very effective in combating such high complexity. During the circuit synthesis of large-scale digital or analog applications, it is important to predict the response of the circuit under study as a function of design parameters such as geometrical and substrate features. Traditional MOR techniques perform order reduction only with respect to frequency, and therefore the computation of a new electromagnetic model and the corresponding reduced model are needed each time a design parameter is modified, reducing the CPU efficiency. Parameterized model order reduction (PMOR) methods become necessary to reduce large systems of equations with respect to frequency and other design parameters of the circuit, such as geometrical layout or substrate characteristics. We propose a novel PMOR technique applicable to PEEC analysis which is based on a parameterization process of matrices generated by the PEEC method and the projection subspace generated by a passivity-preserving MOR method. The proposed PMOR technique guarantees overall stability and passivity of parameterized reduced order models over a user-defined range of design parameter values. Pertinent numerical examples validate the proposed PMOR approach

    Parametric t-Distributed Stochastic Exemplar-centered Embedding

    Full text link
    Parametric embedding methods such as parametric t-SNE (pt-SNE) have been widely adopted for data visualization and out-of-sample data embedding without further computationally expensive optimization or approximation. However, the performance of pt-SNE is highly sensitive to the hyper-parameter batch size due to conflicting optimization goals, and often produces dramatically different embeddings with different choices of user-defined perplexities. To effectively solve these issues, we present parametric t-distributed stochastic exemplar-centered embedding methods. Our strategy learns embedding parameters by comparing given data only with precomputed exemplars, resulting in a cost function with linear computational and memory complexity, which is further reduced by noise contrastive samples. Moreover, we propose a shallow embedding network with high-order feature interactions for data visualization, which is much easier to tune but produces comparable performance in contrast to a deep neural network employed by pt-SNE. We empirically demonstrate, using several benchmark datasets, that our proposed methods significantly outperform pt-SNE in terms of robustness, visual effects, and quantitative evaluations.Comment: fixed typo

    HyperNP: Interactive Visual Exploration of Multidimensional Projection Hyperparameters

    Full text link
    Projection algorithms such as t-SNE or UMAP are useful for the visualization of high dimensional data, but depend on hyperparameters which must be tuned carefully. Unfortunately, iteratively recomputing projections to find the optimal hyperparameter value is computationally intensive and unintuitive due to the stochastic nature of these methods. In this paper we propose HyperNP, a scalable method that allows for real-time interactive hyperparameter exploration of projection methods by training neural network approximations. HyperNP can be trained on a fraction of the total data instances and hyperparameter configurations and can compute projections for new data and hyperparameters at interactive speeds. HyperNP is compact in size and fast to compute, thus allowing it to be embedded in lightweight visualization systems such as web browsers. We evaluate the performance of the HyperNP across three datasets in terms of performance and speed. The results suggest that HyperNP is accurate, scalable, interactive, and appropriate for use in real-world settings

    Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks

    Full text link
    One of the challenges in modeling cognitive events from electroencephalogram (EEG) data is finding representations that are invariant to inter- and intra-subject differences, as well as to inherent noise associated with such data. Herein, we propose a novel approach for learning such representations from multi-channel EEG time-series, and demonstrate its advantages in the context of mental load classification task. First, we transform EEG activities into a sequence of topology-preserving multi-spectral images, as opposed to standard EEG analysis techniques that ignore such spatial information. Next, we train a deep recurrent-convolutional network inspired by state-of-the-art video classification to learn robust representations from the sequence of images. The proposed approach is designed to preserve the spatial, spectral, and temporal structure of EEG which leads to finding features that are less sensitive to variations and distortions within each dimension. Empirical evaluation on the cognitive load classification task demonstrated significant improvements in classification accuracy over current state-of-the-art approaches in this field.Comment: To be published as a conference paper at ICLR 201
    corecore