2,627 research outputs found

    Fully-dynamic Approximation of Betweenness Centrality

    Full text link
    Betweenness is a well-known centrality measure that ranks the nodes of a network according to their participation in shortest paths. Since an exact computation is prohibitive in large networks, several approximation algorithms have been proposed. Besides that, recent years have seen the publication of dynamic algorithms for efficient recomputation of betweenness in evolving networks. In previous work we proposed the first semi-dynamic algorithms that recompute an approximation of betweenness in connected graphs after batches of edge insertions. In this paper we propose the first fully-dynamic approximation algorithms (for weighted and unweighted undirected graphs that need not to be connected) with a provable guarantee on the maximum approximation error. The transfer to fully-dynamic and disconnected graphs implies additional algorithmic problems that could be of independent interest. In particular, we propose a new upper bound on the vertex diameter for weighted undirected graphs. For both weighted and unweighted graphs, we also propose the first fully-dynamic algorithms that keep track of such upper bound. In addition, we extend our former algorithm for semi-dynamic BFS to batches of both edge insertions and deletions. Using approximation, our algorithms are the first to make in-memory computation of betweenness in fully-dynamic networks with millions of edges feasible. Our experiments show that they can achieve substantial speedups compared to recomputation, up to several orders of magnitude

    Efficient Exact and Approximate Algorithms for Computing Betweenness Centrality in Directed Graphs

    Full text link
    Graphs are an important tool to model data in different domains, including social networks, bioinformatics and the world wide web. Most of the networks formed in these domains are directed graphs, where all the edges have a direction and they are not symmetric. Betweenness centrality is an important index widely used to analyze networks. In this paper, first given a directed network GG and a vertex rV(G)r \in V(G), we propose a new exact algorithm to compute betweenness score of rr. Our algorithm pre-computes a set RV(r)\mathcal{RV}(r), which is used to prune a huge amount of computations that do not contribute in the betweenness score of rr. Time complexity of our exact algorithm depends on RV(r)|\mathcal{RV}(r)| and it is respectively Θ(RV(r)E(G))\Theta(|\mathcal{RV}(r)|\cdot|E(G)|) and Θ(RV(r)E(G)+RV(r)V(G)logV(G))\Theta(|\mathcal{RV}(r)|\cdot|E(G)|+|\mathcal{RV}(r)|\cdot|V(G)|\log |V(G)|) for unweighted graphs and weighted graphs with positive weights. RV(r)|\mathcal{RV}(r)| is bounded from above by V(G)1|V(G)|-1 and in most cases, it is a small constant. Then, for the cases where RV(r)\mathcal{RV}(r) is large, we present a simple randomized algorithm that samples from RV(r)\mathcal{RV}(r) and performs computations for only the sampled elements. We show that this algorithm provides an (ϵ,δ)(\epsilon,\delta)-approximation of the betweenness score of rr. Finally, we perform extensive experiments over several real-world datasets from different domains for several randomly chosen vertices as well as for the vertices with the highest betweenness scores. Our experiments reveal that in most cases, our algorithm significantly outperforms the most efficient existing randomized algorithms, in terms of both running time and accuracy. Our experiments also show that our proposed algorithm computes betweenness scores of all vertices in the sets of sizes 5, 10 and 15, much faster and more accurate than the most efficient existing algorithms.Comment: arXiv admin note: text overlap with arXiv:1704.0735

    Computing Vertex Centrality Measures in Massive Real Networks with a Neural Learning Model

    Full text link
    Vertex centrality measures are a multi-purpose analysis tool, commonly used in many application environments to retrieve information and unveil knowledge from the graphs and network structural properties. However, the algorithms of such metrics are expensive in terms of computational resources when running real-time applications or massive real world networks. Thus, approximation techniques have been developed and used to compute the measures in such scenarios. In this paper, we demonstrate and analyze the use of neural network learning algorithms to tackle such task and compare their performance in terms of solution quality and computation time with other techniques from the literature. Our work offers several contributions. We highlight both the pros and cons of approximating centralities though neural learning. By empirical means and statistics, we then show that the regression model generated with a feedforward neural networks trained by the Levenberg-Marquardt algorithm is not only the best option considering computational resources, but also achieves the best solution quality for relevant applications and large-scale networks. Keywords: Vertex Centrality Measures, Neural Networks, Complex Network Models, Machine Learning, Regression ModelComment: 8 pages, 5 tables, 2 figures, version accepted at IJCNN 2018. arXiv admin note: text overlap with arXiv:1810.1176

    KADABRA is an ADaptive Algorithm for Betweenness via Random Approximation

    Get PDF
    We present KADABRA, a new algorithm to approximate betweenness centrality in directed and undirected graphs, which significantly outperforms all previous approaches on real-world complex networks. The efficiency of the new algorithm relies on two new theoretical contributions, of independent interest. The first contribution focuses on sampling shortest paths, a subroutine used by most algorithms that approximate betweenness centrality. We show that, on realistic random graph models, we can perform this task in time E12+o(1)|E|^{\frac{1}{2}+o(1)} with high probability, obtaining a significant speedup with respect to the Θ(E)\Theta(|E|) worst-case performance. We experimentally show that this new technique achieves similar speedups on real-world complex networks, as well. The second contribution is a new rigorous application of the adaptive sampling technique. This approach decreases the total number of shortest paths that need to be sampled to compute all betweenness centralities with a given absolute error, and it also handles more general problems, such as computing the kk most central nodes. Furthermore, our analysis is general, and it might be extended to other settings.Comment: Some typos correcte
    corecore