78 research outputs found

    Towards an Advanced Automotive Radar Front-end Based on Gap Waveguide Technology

    Get PDF
    This thesis presents the early works on dual circularly polarized array antenna based on gap waveguide, also microstrip-to-waveguide transitions for integration of automotive radar front-end. Being the most widely used radar antenna, PCB antenna suffers from dielectric loss and design flexibility. Next generation automotive radars demand sophisticated antenna systems with high efficiency, which makes waveguide antenna become a better candidate. Over the last few years, gap waveguide has shown advantages for implementation of complicated antenna systems. Ridge gap waveguides have been widely used in passive gap waveguide components design including slot arrays. In this regard, two transitions between ridge gap waveguides and microstrip lines are presented for the integration with gap waveguide antennas. The transitions are verified in both passive and active configuration. Another work on packaging techniques is presented for integration with inverted microstrip gap waveguide antennas.Systems utilizing individual linear polarization (LP) that lack polarimetric capabilities are not capable of measuring the full scattering matrix, thus losing information about the scenery. To develop a more advanced radar system with better detectability, dual circularly polarized gap waveguide slot arrays for polarimetric radar sensing are investigated. An 8 78 planar array using double grooved circular waveguide polarizer is presented. The polarizers are compact in size and have excellent polarization properties. Multi-layer design of the array antenna benefits from the gap waveguide technology and features better performance. The works presented in this thesis laid the foundation of future works regarding integration of the radar front end. More works on prototyping radar systems using gap waveguide technology will be presented in future publications

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    From liquid crystal on silicon and liquid crystal reflectarray to reconfigurable intelligent surfaces for post-5G networks

    Get PDF
    This communication aims to address the recent surge of interest in reconfigurable intelligent surfaces (RISs) among both academic and industrial communities, which has largely neglected the historical developments of two other underpinning technologies, i.e., liquid crystal on silicon (LCOS) and liquid crystal reflectarray antenna (LCRA). Specifically, this communication focuses on the state of the art of LC-RIS, highlighting the unique features of this newly raised enabling technology for post-5G (6G) networks and comparing it to LCOS, which operates at different frequencies and is suited to different use cases. Drawing on insights from existing knowledge of LCOS and LCRA, opportunities and challenges are explored for LC-RIS’s technical advancements in enhancing the coverage, capacity, and energy efficiency of wireless networks. In particular, the development status and roadmap of LC-RIS in China is reviewed

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Radio Channel Characterization for Future Wireless Networks and Applications

    Get PDF
    The new frontier of Above-6GHz bands is revolutionizing the field of wireless telecommunications, requiring new radio channel models to support the development of future Giga-bit-per-second systems. Recently, deterministic ray-based models as Ray Tracing are catching on worldwide thanks to their frequency-agility and reliable predictions. A modern 3D Ray Tracing developed at University of Bologna has been indeed calibrated and used to investigate the Above-6GHz radio channel properties. As starting point, an item-level electromagnetic characterization of common items and materials has been achieved successfully to obtain information about the complex permittivity, scattering diagrams and even de-polarization effects, both utilizing Vector Spectrum Analyzer (at 7-15GHz) and custom Channel Sounder (at 70GHz). Thus, a complete tuning of the Ray Tracing has been completed for Above-6GHz frequencies. Then, 70GHz indoor doubledirectional channel measurements have been performed in collaboration with TU Ilmenau, in order to attain a multidimensional analysis of propagation mechanisms in time and space, outlining the differences between Below- and Above-6GHz propagation. Furthermore, multi-antenna systems, as Multiple-Input-Multiple- Output (MIMO) and Beamforming have been taken into considerations, as strategic technologies for Above-6GHz systems, focusing on their implementation, limits and differences. Finally, complex system simulations of Space-Division-Multiple- Access (SDMA) networks in indoor scenarios have been tested, to assess the capabilities of Beamforming. In particular, efficient Beam Search and Tracking algorithms have been proposed to assess the impact of interference on Multi-User Beamforming at 70GHz and, also, novel Multi-Beam Beamforming schemes have been tested at 60GHz to investigate diversity strategies to cope with NLOS link and Human Blockage events. Moreover, the novel concept of Ray-Tracing-assisted Beamforming has been outlined, showing that ray-based models represent today the promising key tools to evaluate, design and enhance the future Above-6GHz multi-antenna systems

    Over-The-Air (OTA) Measurement Method for MIMO-enabled Mobile Terminals

    Get PDF
    Over-The-Air (OTA) test methods for performance evaluation play an important role in the certification process of commercial User Equipment (UE) and for admission of UE to cellular networks. Novel OTA test methods and metrics are required for state-of-the-art mobile communication standards such as 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) due to the extensive use of Multiple Input – Multiple Output (MIMO) transmission techniques. The variety of different MIMO operating modes and the almost unlimited choice of possible multi-path channel conditions under which UE performance may be evaluated is not accounted for by established Single Input – Single Output (SISO) OTA performance metrics like Total Isotropic Sensitivity (TIS) and Total Radiated Power (TRP). As pointed out in this dissertation, meaningful metrics and cost effective, low complexity measurement methods can nevertheless be derived by focusing on characterization of the physical attributes of UE and by adopting statistical metrics. Starting from an overview of existing OTA measurement methods for SISO devices, extensions which are necessary to evaluate UE performance in the different MIMO operating modes which are foreseen in the 3GPP LTE standard are discussed. Relations between UE implementation attributes and the UE performance which is observed in different MIMO operating modes are derived using generic antenna and propagation models. Based on these models existing proposals for OTA test methods are reviewed. Their suitability and the relevance of different implementation aspects therein are discussed. The main result of this dissertation is a novel MIMO OTA test plan which focuses on the characterization of relevant UE attributes and meets the goals of low complexity and high reproducibility. Two complementary metrics and corresponding measurement procedures for evaluation of MIMO OTA performance are developed in order to address the diversity of possible propagation scenarios. The theoretical results are supported by extensive measurements using preliminary implementations of the proposed method. These include results from an international round-robin measurement campaign for High-Speed Packet Access (HSPA) devices and results from a variety of measurements on LTE devices which were performed at different test sites. Additional validation and investigation of specific aspects is addressed by simulation.Over-The-Air (OTA) Messverfahren für MIMO-fähige mobile Endgeräte Over-The-Air (OTA) Testverfahren für die Bewertung der Qualität von kommerziellen Endgeräten (User Equipment (UE)) sind von großer Bedeutung im Rahmen der Zertifizierung von UE und der Zulassung zu Mobilfunknetzwerken. Im Zusammenhang mit den aktuellen mobilen Kommunikationsstandards, wie etwa dem 3rd Generation Partnership Project (3GPP) Standard Long Term Evolution (LTE), sind, aufgrund der Verwendung von Multiple Input – Multiple Output (MIMO) Übertragungstechniken neuartige Metriken und Messverfahren erforderlich. Die Vielfalt der verschiedenen MIMO Betriebsarten und die fast unbegrenzte Auswahl möglicher Kanalbedingungen (Mehrwegeausbreitung), unter denen die Qualität von UE bewertet werden kann, wird von den etablierten Single Input – Single Output (SISO) OTA Metriken Total Isotropic Sensitivity (TIS) und Total Radiated Power (TRP) nicht abgedeckt. Wie in dieser Arbeit gezeigt wird, lassen sich durch Fokussierung auf die Charakterisierung der maßgeblichen physikalischen Eigenschaften des UE sowie Einführung statistischer Metriken dennoch aussagekräftige Metriken und kostengünstige Messmethoden geringer Komplexität gewinnen. Ausgehend von einem Überblick existierender OTA Testverfahren für SISO Endgeräte werden die Erweiterungen diskutiert, die notwendig sind, um die Qualität von Endgeräten unter den verschiedenen MIMO Betriebsarten, die der Standard 3GPP LTE vorsieht, bewerten zu können. Unter Verwendung generischer Modelle für Antennen und Ausbreitungsszenarien werden Beziehungen zwischen den Eigenschaften von UE und der in den verschiedenen MIMO Betriebsarten zu beobachtenden Emfangsqualität abgeleitet. Darauf aufbauend werden existierende Vorschläge für OTA Testverfahren untersucht. Deren Eignung und die Relevanz der verschiedener Aspekte in ihrer Implementierung werden diskutiert. Das wesentliche Ergebnis dieser Arbeit ist ein neuartiges MIMO OTA Testkonzept, bei dem die Charakterisierung der relevanten UE Eigenschaften im Mittelpunkt steht und welches den Anforderungen geringer Komplexität und hoher Reproduzierbarkeit genügt. Es werden zwei einander ergänzende Metriken definiert und die zugehörigen Testvorschriften vorgestellt, mit dem Ziel die Vielfalt der möglichen Übertragungszenarien abzudecken. Der theoretische Herleitungen werden durch umfangreiche Messungen mit vorläufigen Implementierungen des vorgeschlagenen Testkonzeptes unterstüzt. Dazu gehören Ergebnisse aus einer internationalen Round-Robin-Messkampagne für High-Speed Packet Access (HSPA)-Endgeräte und Ergebnisse aus zahlreichen Messungen an LTE Endgeräten, die in verschiedenen Laboren durchgeführt wurden. Eine Zusätzliche Validierung sowie die Untersuchung einiger spezifischer Aspekte erfolgt mit Hilfe von Simulationen

    Capacity Enhancement by Pattern-Reconfigurable Multiple Antenna Systems in Vehicular Applications

    Get PDF
    This work presents a design methodology for pattern reconfigurable antennas in automotive applications. Channel simulation is used to identify the relevant beam directions prior to the design of the antenna. Based on this knowledge several reconfigurable multiple antenna systems are designed. These antennas are evaluated by the channel capacity calculation from virtual and real-world test drives. An increase of the channel capacity by a factor of 2 compared to a conventional system is observed

    60 GHz Wireless Propagation Channels: Characterization, Modeling and Evaluation

    Get PDF
    To be able to connect wirelessly to the internet is nowadays a part of everyday life and the number of wireless devices accessing wireless networks worldwide are increasing rapidly. However, with the increasing number of wireless devices and applications and the amount available bandwidth, spectrum shortage is an issue. A promising way to increase the amount of available spectrum is to utilize frequency bands in the mm-wave range of 30-300 GHz that previously have not been used for typical consumer applications. The 60 GHz band has been pointed out as a good candidate for short range, high data rate communications, as the amount of available bandwidth is at least 5 GHz worldwide, with most countries having 7 GHz of bandwidth available in this band. This large bandwidth is expected to allow for wireless communication with bit rates up to 7 Gbit/s, which can be compared to the typical WLAN systems of today that typically provide bit rates up to 0.6 Gbit/s. However, the performance of any wireless system is highly dependent on the properties and characteristics of the wireless propagation channel. This thesis focuses on indoor short range wireless propagation channels in the 60 GHz band and contains a collection of papers that characterizes, models and evaluates different aspects that are directly related to the propagation channel properties. Paper I investigates the directional properties of the indoor 60 GHz wireless radio channel based on a set of indoor measurements in a conference room. In the paper, the signal pathways and propagation mechanisms for the strongest paths are identified. The results show that first and second order interactions account for the major contribution of the received power. The results also show that finer structures, such as ceiling lamps, can be significant interacting objects. Paper II presents a cluster-based double-directional channel model for 60 GHz indoor multiple-input multiple-output (MIMO) systems. This paper is a direct continuation of the results in paper I. The model supports arbitrary antenna elements and array configurations and is validated against measurement data. The validation shows that the channel model is able to efficiently reproduce the statistical properties of the measured channels. The presented channel model is also compared with the 60 GHz channel models developed for the industry standards IEEE802.15.3c and IEEE802.11ad. Paper III characterizes the effect of shadowing due to humans and other objects. Measurements of the shadowing gain for human legs, metallic sheets, as well as metallic and plastic cylinders are presented. It is shown that the shadowing gain of these objects are fairly similar and that the shadowing due to the metal cylinder can be determined based on the geometrical theory of diffraction. Next, the shadowing due to a water-filled human body phantom is compared with the shadowing due to real humans. The results show that the water-filled phantom has shadowing properties similar to those of humans and is therefore suitable for use in 60 GHz human body shadowing measurements. Paper IV presents a novel way of estimating the cluster decay and fading. Previously, the cluster decay has usually been determined by performing a simple linear regression, without considering the effects of the noise floor and cluster fading. The paper presents an estimation method which takes these effects into account and jointly estimates both the cluster decay and cluster fading. It is shown that this estimation method can greatly improve the estimated parameters. Paper V evaluates the capacity improvement capability of spatial multiplexing and beamforming techniques for 60 GHz systems in an indoor environment. In this paper, beamforming refers to conventional gain focusing in the direction of the strongest propagation path. The paper uses a capacity metric that only depends on the multi-path richness of the propagation channel and the antenna aperture size. In the paper, it is shown that, when the link budget is limited due to electrically small antennas and long Tx-Rx separation distances, beamforming approximates the capacity of spatial multiplexing. However, spatial multiplexing is a worthwhile option when Rx SNR is favorable and a higher peak data rate is required. Paper VI describes different methods for the clustering of wireless multi-path components. In the literature, the clustering method that is predominantly used is the K-means algorithm, or a power-weighted version of K-means, called K-power means. In this paper, we point out that K-means is a special case of a Gaussian mixture model (GMM). The paper presents a clustering method based on a GMM. This method is able to handle arbitrary cluster spreads in the different dimensions better than the K-means algorithm. A power-weighted version of the GMM is also presented. In addition to this, a mixture model based on asymmetric Laplace distributions is also presented, with and without power-weighting. Paper VII is based on channel measurements in a small and a large room, where the Tx and Rx arrays have dual polarized elements. Using these measurements, the cross-polarization ratio (XPR) of the multi-path components are characterized. This gives valuable information on how the MPCs are affected by the propagation channel. A statistical description of the XPR is also needed for the development of a propagation channel model that supports polarization. The paper also investigates the eigenvalue spreads for single and dual polarized elements. Furthermore, the measurements include LOS and NLOS measurement, where the NLOS scenarios include water-filled human presented in paper III. The results show that the capacity can be greatly improved if dual-polarized elements are used, and that the XPR values are in general higher compared to lower frequencies

    Low-frequency Antennas, Transparent Ground Planes, and Transponders for Communication Enhancement in Unfavorable Environments

    Full text link
    The communication environment has a major influence on the performance of wireless networks. Unlike antennas, receivers, processors, and other components of a typical wireless system, the designer has almost no control over the communication channel. Therefore, it is imminent that the adverse effects of the communication channel such as path-loss, multi-path, lack of a clear line of sight, and interference are among the most limiting factors in designing and operating wireless networks. Recent investments in infrastructures such as cell-phone towers, communication satellites, routers, and networking devices have been aimed at reducing the aforementioned adverse effects. However, wireless ad hoc networks (WANET) cannot rely on pre-existing infrastructures such as access points or routers. In this thesis, a number of solutions are presented to enhance communication and navigation in harsh environments. 1) At lower frequencies, the defects of the communication channel are less prominent, which has led militaries to use UHF and VHF frequency bands for communication. A number of optically transparent UHF antennas are developed and embedded in the windows of military vehicles to reduce their visual signature. 2) Direction finding at low frequencies using baseline method results in an exorbitantly large array of sensors. However, a vector sensor consisting of three orthogonal two-port loop antennas can be used. A simple and accurate circuit model for the two-port loop antenna is developed for the first time that can be used for direction of arrival estimation over a wide range of frequencies and angles. 3) Using a conventional radio repeater with ad-hoc systems requires a communication protocol and decreases the throughput by a factor of two for every repeater in the chain. A full-duplex repeater, capable of simultaneously transmitting and receiving at the same frequency, is developed for the 2.4 GHz ISM band.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143898/1/manikafa_1.pd
    • …
    corecore