4,775 research outputs found

    Fully-Coupled Two-Stream Spatiotemporal Networks for Extremely Low Resolution Action Recognition

    Full text link
    A major emerging challenge is how to protect people's privacy as cameras and computer vision are increasingly integrated into our daily lives, including in smart devices inside homes. A potential solution is to capture and record just the minimum amount of information needed to perform a task of interest. In this paper, we propose a fully-coupled two-stream spatiotemporal architecture for reliable human action recognition on extremely low resolution (e.g., 12x16 pixel) videos. We provide an efficient method to extract spatial and temporal features and to aggregate them into a robust feature representation for an entire action video sequence. We also consider how to incorporate high resolution videos during training in order to build better low resolution action recognition models. We evaluate on two publicly-available datasets, showing significant improvements over the state-of-the-art.Comment: 9 pagers, 5 figures, published in WACV 201

    Learning to See through a Few Pixels: Multi Streams Network for Extreme Low-Resolution Action Recognition

    Get PDF
    Human action recognition is one of the most pressing questions in societal emergencies of any kind. Technology is helping to solve such problems at the cost of stealing human privacy. Several approaches have considered the relevance of privacy in the pervasive process of observing people. New algorithms have been proposed to deal with low-resolution images hiding people identity. However, many of these methods do not consider that social security asks for real-time solutions: active cameras require flexible distributed systems in sensible areas as airports, hospitals, stations, squares and roads. To conjugate both human privacy and real-time supervision, we propose a novel deep architecture, the Multi Streams Network. This model works in real-time and performs action recognition on extremely low-resolution videos, exploiting three sources of information: RGB images, optical flow and slack mask data. Experiments on two datasets show that our architecture improves the recognition accuracy compared to the two-streams approach and ensure real-time execution on Edge TPU (Tensor Processing Unit)

    Collaborative Spatio-temporal Feature Learning for Video Action Recognition

    Full text link
    Spatio-temporal feature learning is of central importance for action recognition in videos. Existing deep neural network models either learn spatial and temporal features independently (C2D) or jointly with unconstrained parameters (C3D). In this paper, we propose a novel neural operation which encodes spatio-temporal features collaboratively by imposing a weight-sharing constraint on the learnable parameters. In particular, we perform 2D convolution along three orthogonal views of volumetric video data,which learns spatial appearance and temporal motion cues respectively. By sharing the convolution kernels of different views, spatial and temporal features are collaboratively learned and thus benefit from each other. The complementary features are subsequently fused by a weighted summation whose coefficients are learned end-to-end. Our approach achieves state-of-the-art performance on large-scale benchmarks and won the 1st place in the Moments in Time Challenge 2018. Moreover, based on the learned coefficients of different views, we are able to quantify the contributions of spatial and temporal features. This analysis sheds light on interpretability of the model and may also guide the future design of algorithm for video recognition.Comment: CVPR 201

    Towards Automatic Speech Identification from Vocal Tract Shape Dynamics in Real-time MRI

    Full text link
    Vocal tract configurations play a vital role in generating distinguishable speech sounds, by modulating the airflow and creating different resonant cavities in speech production. They contain abundant information that can be utilized to better understand the underlying speech production mechanism. As a step towards automatic mapping of vocal tract shape geometry to acoustics, this paper employs effective video action recognition techniques, like Long-term Recurrent Convolutional Networks (LRCN) models, to identify different vowel-consonant-vowel (VCV) sequences from dynamic shaping of the vocal tract. Such a model typically combines a CNN based deep hierarchical visual feature extractor with Recurrent Networks, that ideally makes the network spatio-temporally deep enough to learn the sequential dynamics of a short video clip for video classification tasks. We use a database consisting of 2D real-time MRI of vocal tract shaping during VCV utterances by 17 speakers. The comparative performances of this class of algorithms under various parameter settings and for various classification tasks are discussed. Interestingly, the results show a marked difference in the model performance in the context of speech classification with respect to generic sequence or video classification tasks.Comment: To appear in the INTERSPEECH 2018 Proceeding

    Dual-stream spatiotemporal networks with feature sharing for monitoring animals in the home cage

    Full text link
    This paper presents a spatiotemporal deep learning approach for mouse behavioural classification in the home-cage. Using a series of dual-stream architectures with assorted modifications to increase performance, we introduce a novel feature sharing approach that jointly processes the streams at regular intervals throughout the network. To investigate the efficacy of this approach, models were evaluated by dissociating the streams and training/testing in the same rigorous manner as the main classifiers. Using an annotated, publicly available dataset of a singly-housed mice, we achieve prediction accuracy of 86.47% using an ensemble of a Inception-based network and an attention-based network, both of which utilize this feature sharing. We also demonstrate through ablation studies that for all models, the feature-sharing architectures consistently perform better than conventional ones having separate streams. The best performing models were further evaluated on other activity datasets, both mouse and human. Future work will investigate the effectiveness of feature sharing to behavioural classification in the unsupervised anomaly detection domain

    Action recognition using single-pixel time-of-flight detection

    Get PDF
    Action recognition is a challenging task that plays an important role in many robotic systems, which highly depend on visual input feeds. However, due to privacy concerns, it is important to find a method which can recognise actions without using visual feed. In this paper, we propose a concept for detecting actions while preserving the test subject's privacy. Our proposed method relies only on recording the temporal evolution of light pulses scattered back from the scene. Such data trace to record one action contains a sequence of one-dimensional arrays of voltage values acquired by a single-pixel detector at 1 GHz repetition rate. Information about both the distance to the object and its shape are embedded in the traces. We apply machine learning in the form of recurrent neural networks for data analysis and demonstrate successful action recognition. The experimental results show that our proposed method could achieve on average 96.47 % accuracy on the actions walking forward, walking backwards, sitting down, standing up and waving hand, using recurrent neural network
    • …
    corecore