2,922 research outputs found

    Retrospective Higher-Order Markov Processes for User Trails

    Full text link
    Users form information trails as they browse the web, checkin with a geolocation, rate items, or consume media. A common problem is to predict what a user might do next for the purposes of guidance, recommendation, or prefetching. First-order and higher-order Markov chains have been widely used methods to study such sequences of data. First-order Markov chains are easy to estimate, but lack accuracy when history matters. Higher-order Markov chains, in contrast, have too many parameters and suffer from overfitting the training data. Fitting these parameters with regularization and smoothing only offers mild improvements. In this paper we propose the retrospective higher-order Markov process (RHOMP) as a low-parameter model for such sequences. This model is a special case of a higher-order Markov chain where the transitions depend retrospectively on a single history state instead of an arbitrary combination of history states. There are two immediate computational advantages: the number of parameters is linear in the order of the Markov chain and the model can be fit to large state spaces. Furthermore, by providing a specific structure to the higher-order chain, RHOMPs improve the model accuracy by efficiently utilizing history states without risks of overfitting the data. We demonstrate how to estimate a RHOMP from data and we demonstrate the effectiveness of our method on various real application datasets spanning geolocation data, review sequences, and business locations. The RHOMP model uniformly outperforms higher-order Markov chains, Kneser-Ney regularization, and tensor factorizations in terms of prediction accuracy

    Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families

    Get PDF
    We propose Kernel Hamiltonian Monte Carlo (KMC), a gradient-free adaptive MCMC algorithm based on Hamiltonian Monte Carlo (HMC). On target densities where classical HMC is not an option due to intractable gradients, KMC adaptively learns the target's gradient structure by fitting an exponential family model in a Reproducing Kernel Hilbert Space. Computational costs are reduced by two novel efficient approximations to this gradient. While being asymptotically exact, KMC mimics HMC in terms of sampling efficiency, and offers substantial mixing improvements over state-of-the-art gradient free samplers. We support our claims with experimental studies on both toy and real-world applications, including Approximate Bayesian Computation and exact-approximate MCMC.Comment: 20 pages, 7 figure

    Hierarchical Decomposition of Nonlinear Dynamics and Control for System Identification and Policy Distillation

    Full text link
    The control of nonlinear dynamical systems remains a major challenge for autonomous agents. Current trends in reinforcement learning (RL) focus on complex representations of dynamics and policies, which have yielded impressive results in solving a variety of hard control tasks. However, this new sophistication and extremely over-parameterized models have come with the cost of an overall reduction in our ability to interpret the resulting policies. In this paper, we take inspiration from the control community and apply the principles of hybrid switching systems in order to break down complex dynamics into simpler components. We exploit the rich representational power of probabilistic graphical models and derive an expectation-maximization (EM) algorithm for learning a sequence model to capture the temporal structure of the data and automatically decompose nonlinear dynamics into stochastic switching linear dynamical systems. Moreover, we show how this framework of switching models enables extracting hierarchies of Markovian and auto-regressive locally linear controllers from nonlinear experts in an imitation learning scenario.Comment: 2nd Annual Conference on Learning for Dynamics and Contro

    Statistical inference of the mechanisms driving collective cell movement

    Get PDF
    Numerous biological processes, many impacting on human health, rely on collective cell movement. We develop nine candidate models, based on advection-diffusion partial differential equations, to describe various alternative mechanisms that may drive cell movement. The parameters of these models were inferred from one-dimensional projections of laboratory observations of Dictyostelium discoideum cells by sampling from the posterior distribution using the delayed rejection adaptive Metropolis algorithm (DRAM). The best model was selected using the Widely Applicable Information Criterion (WAIC). We conclude that cell movement in our study system was driven both by a self-generated gradient in an attractant that the cells could deplete locally, and by chemical interactions between the cells

    Herding as a Learning System with Edge-of-Chaos Dynamics

    Full text link
    Herding defines a deterministic dynamical system at the edge of chaos. It generates a sequence of model states and parameters by alternating parameter perturbations with state maximizations, where the sequence of states can be interpreted as "samples" from an associated MRF model. Herding differs from maximum likelihood estimation in that the sequence of parameters does not converge to a fixed point and differs from an MCMC posterior sampling approach in that the sequence of states is generated deterministically. Herding may be interpreted as a"perturb and map" method where the parameter perturbations are generated using a deterministic nonlinear dynamical system rather than randomly from a Gumbel distribution. This chapter studies the distinct statistical characteristics of the herding algorithm and shows that the fast convergence rate of the controlled moments may be attributed to edge of chaos dynamics. The herding algorithm can also be generalized to models with latent variables and to a discriminative learning setting. The perceptron cycling theorem ensures that the fast moment matching property is preserved in the more general framework
    • …
    corecore