702 research outputs found

    Design and Implementation of Integrated High Efficiency Low-voltage CMOS DC-DC Converters

    Get PDF
    RÉSUMÉ De nos jours, les appareils portatifs sont utilisés dans plusieurs applications. Ils utilisent en général une batterie qui doit être remplacée ou rechargée régulièrement. Dans le cas d'applications biomédicales, la durée de vie de la batterie est un paramètre critique. Pour un appareil implantable, une longue durée de vie est un objectif primordial. Cet objectif est généralement atteint en réduisant la consommation de puissance des circuits constituant l'implant. Parmi les diverses techniques existantes qui permettent la réduction de la consommation en puissance des circuits CMOS, on retrouve la technique d'ajustement dynamique de la tension (dynamic voltage scaling - DVS). En réduisant la tension d'alimentation, la consommation totale des circuits peut être diminuée. Cependant cette technique ne peut être implémentée sans faire appel à des circuits dédiés à une gestion intelligente de l'énergie. Dans ce contexte, l'utilisation de convertisseurs de tension DC-DC devient nécessaire pour économiser la charge de la batterie. Mais pour garantir une réduction effective de la consommation globale, des convertisseurs DC-DC de haute efficacité doivent être utilisés. A cette contrainte se rajoute la miniaturisation en utilisant des circuits hautement intégrés pour les applications telles que les implants biomédicaux. Le défi réside dans la conception d'un convertisseur DC-DC totalement intégré tout en assurant une haute efficacité sur une grande plage de tension de sortie. De plus, les appareils tels que les implants électroniques fonctionnent souvent en mode de veille pour réduire la consommation, entrainant ainsi des variations conséquentes de la charge du convertisseur DC-DC. Ceci rajoute un défi supplémentaire pour le maintient d'une haute efficacité de la conversion DC-DC à faible charge. Dans ce mémoire, nous présentons la conception détaillée d'un convertisseur DC-DC hautement efficace et totalement intégré dans une technologie CMOS à faible tension. Nous proposons une implémentation originale et totalement intégrée d'un convertisseur DC-DC à capacités commutés (switched capacitor - SC) opérant avec un contrôle asynchrone. L'efficacité du convertisseur est maintenue élevée en ajustant sa topologie et sa fréquence d'opération selon la charge.----------ABSTRACT Today, battery-powered portable devices are used in many applications. In applications like biomedical implants, the battery life is a major concern. Since replacing the battery of an implant needs a surgical procedure, a long battery life is a goal that all implants try to achieve. This is normally done by reducing the power dissipation in the implant's circuitry. One of the various techniques that exist for reducing the power consumption in CMOS circuitry is the dynamic voltage scaling (DVS) technique. By reducing the supply voltage, the overall power consumption of the circuits can be decreased. This technique cannot be implemented without power management blocks. The use of DC-DC converters becomes a must to save battery power. The overall power reduction can be improved by introducing high efficiency DC-DC converters. Moreover, to provide patients with the most comfort, small integrated circuits should be used in applications such as biomedical implants. The challenging aspect of designing integrated DC-DC converters is keeping the efficiency high while providing an adjustable output voltage. Additionally, devices such as electronic implants go in and out of stand-by mode to reduce power consumption. From the perspective of the DC-DC converter, the output load power is varying according to the mode of operation of the implant. This adds another challenge of sustaining the DC-DC conversion efficiency high under various loading conditions. At very light loads, preserving a high conversion efficiency is a challenge. In this master thesis, a detailed design of a high-efficiency low-voltage fully integrated DC-DC converter is presented. A unique structure of a fully integrated switched-capacitor (SC) DC-DC converter with asynchronous control is proposed. The efficiency of the converter is maintained high by adjusting the converter topology and operating frequency according to the loading conditions. The proposed SC DC-DC converter uses three different topologies to achieve three different conversion ratios. By doing so, the converter maintains high conversion efficiency at various output voltage levels. Also, an adaptive operating frequency is used by the asynchronous control to reduce efficiency losses at various loading conditions

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    Power Management ICs for Internet of Things, Energy Harvesting and Biomedical Devices

    Get PDF
    This dissertation focuses on the power management unit (PMU) and integrated circuits (ICs) for the internet of things (IoT), energy harvesting and biomedical devices. Three monolithic power harvesting methods are studied for different challenges of smart nodes of IoT networks. Firstly, we propose that an impedance tuning approach is implemented with a capacitor value modulation to eliminate the quiescent power consumption. Secondly, we develop a hill-climbing MPPT mechanism that reuses and processes the information of the hysteresis controller in the time-domain and is free of power hungry analog circuits. Furthermore, the typical power-performance tradeoff of the hysteresis controller is solved by a self-triggered one-shot mechanism. Thus, the output regulation achieves high-performance and yet low-power operations as low as 12 µW. Thirdly, we introduce a reconfigurable charge pump to provide the hybrid conversion ratios (CRs) as 1⅓× up to 8× for minimizing the charge redistribution loss. The reconfigurable feature also dynamically tunes to maximum power point tracking (MPPT) with the frequency modulation, resulting in a two-dimensional MPPT. Therefore, the voltage conversion efficiency (VCE) and the power conversion efficiency (PCE) are enhanced and flattened across a wide harvesting range as 0.45 to 3 V. In a conclusion, we successfully develop an energy harvesting method for the IoT smart nodes with lower cost, smaller size, higher conversion efficiency, and better applicability. For the biomedical devices, this dissertation presents a novel cost-effective automatic resonance tracking method with maximum power transfer (MPT) for piezoelectric transducers (PT). The proposed tracking method is based on a band-pass filter (BPF) oscillator, exploiting the PT’s intrinsic resonance point through a sensing bridge. It guarantees automatic resonance tracking and maximum electrical power converted into mechanical motion regardless of process variations and environmental interferences. Thus, the proposed BPF oscillator-based scheme was designed for an ultrasonic vessel sealing and dissecting (UVSD) system. The sealing and dissecting functions were verified experimentally in chicken tissue and glycerin. Furthermore, a combined sensing scheme circuit allows multiple surgical tissue debulking, vessel sealer and dissector (VSD) technologies to operate from the same sensing scheme board. Its advantage is that a single driver controller could be used for both systems simplifying the complexity and design cost. In a conclusion, we successfully develop an ultrasonic scalpel to replace the other electrosurgical counterparts and the conventional scalpels with lower cost and better functionality

    Ultra-low Power Circuits for Internet of Things (IOT)

    Full text link
    Miniaturized sensor nodes offer an unprecedented opportunity for the semiconductor industry which led to a rapid development of the application space: the Internet of Things (IoT). IoT is a global infrastructure that interconnects physical and virtual things which have the potential to dramatically improve people's daily lives. One of key aspect that makes IoT special is that the internet is expanding into places that has been ever reachable as device form factor continue to decreases. Extremely small sensors can be placed on plants, animals, humans, and geologic features, and connected to the Internet. Several challenges, however, exist that could possibly slow the development of IoT. In this thesis, several circuit techniques as well as system level optimizations to meet the challenging power/energy requirement for the IoT design space are described. First, a fully-integrated temperature sensor for battery-operated, ultra-low power microsystems is presented. Sensor operation is based on temperature independent/dependent current sources that are used with oscillators and counters to generate a digital temperature code. Second, an ultra-low power oscillator designed for wake-up timers in compact wireless sensors is presented. The proposed topology separates the continuous comparator from the oscillation path and activates it only for short period when it is required. As a result, both low power tracking and generation of precise wake-up signal is made possible. Third, an 8-bit sub-ranging SAR ADC for biomedical applications is discussed that takes an advantage of signal characteristics. ADC uses a moving window and stores the previous MSBs voltage value on a series capacitor to achieve energy saving compared to a conventional approach while maintaining its accuracy. Finally, an ultra-low power acoustic sensing and object recognition microsystem that uses frequency domain feature extraction and classification is presented. By introducing ultra-low 8-bit SAR-ADC with 50fF input capacitance, power consumption of the frontend amplifier has been reduced to single digit nW-level. Also, serialized discrete Fourier transform (DFT) feature extraction is proposed in a digital back-end, replacing a high-power/area-consuming conventional FFT.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137157/1/seojeong_1.pd

    Digital-to-Analog Converter Interface for Computer Assisted Biologically Inspired Systems

    Get PDF
    In today\u27s integrated circuit technology, system interfaces play an important role of enabling fast, reliable data communications. A key feature of this work is the exploration and development of ultra-low power data converters. Data converters are present in some form in almost all mixed-signal systems; in particular, digital-to-analog converters present the opportunity for digitally controlled analog signal sources. Such signal sources are used in a variety of applications such as neuromorphic systems and analog signal processing. Multi-dimensional systems, such as biologically inspired neuromorphic systems, require vectors of analog signals. To use a microprocessor to control these analog systems, we must ultimately convert the digital control signal to an analog control signal and deliver it to the system. Integrating such capabilities of a converter on chip can yield significant power and chip area constraints. Special attention is paid to the power efficiency of the data converter, the data converter design discussed in this thesis yields the lowest power consumption to date. The need for a converter with these properties leads us to the concept of a scalable array of power-efficient digital-to-analog converters; the channels of which are time-domain multiplexed so that chip-area is minimized while preserving performance. To take further advantage of microprocessor capabilities, an analog-to- digital design is proposed to return the analog system\u27s outputs to the microprocessor in a digital form. A current-steering digital-to-analog converter was chosen as a candidate for the conversion process because of its natural speed and voltage-to-current translation properties. This choice is nevertheless unusual, because current-steering digital- to-analog converters have a reputation for high performance with high power consumption. A time domain multiplexing scheme is presented such that a digital data set of any size is synchronously multiplexed through a finite array of converters, minimizing the total area and power consumption. I demonstrate the suitability of current-steering digital-to-analog converters for ultra low-power operation with a proof-of-concept design in a widely available 130 nm CMOS technology. In statistical simulation, the proposed digital-to-analog converter was capable of 8-bit, 100 kSps operation while consuming 231 nW of power from a 1 V supply

    Analysis And Design Optimization Of Multiphase Converter

    Get PDF
    Future microprocessors pose many challenges to the power conversion techniques. Multiphase synchronous buck converters have been widely used in high current low voltage microprocessor application. Design optimization needs to be carefully carried out with pushing the envelope specification and ever increasing concentration towards power saving features. In this work, attention has been focused on dynamic aspects of multiphase synchronous buck design. The power related issues and optimizations have been comprehensively investigated in this paper. In the first chapter, multiphase DC-DC conversion is presented with background application. Adaptive voltage positioning and various nonlinear control schemes are evaluated. Design optimization are presented to achieve best static efficiency over the entire load range. Power loss analysis from various operation modes and driver IC definition are studied thoroughly to better understand the loss terms and minimize the power loss. Load adaptive control is then proposed together with parametric optimization to achieve optimum efficiency figure. New nonlinear control schemes are proposed to improve the transient response, i.e. load engage and load release responses, of the multiphase VR in low frequency repetitive transient. Drop phase optimization and PWM transition from long tri-state phase are presented to improve the smoothness and robustness of the VR in mode transition. During high frequency repetitive transient, the control loop should be optimized and nonlinear loop should be turned off. Dynamic current sharing are thoroughly studied in chapter 4. The output impedance of the multiphase v synchronous buck are derived to assist the analysis. Beat frequency is studied and mitigated by proposing load frequency detection scheme by turning OFF the nonlinear loop and introducing current protection in the control loop. Dynamic voltage scaling (DVS) is now used in modern Multi-Core processor (MCP) and multiprocessor System-on-Chip (MPSoC) to reduce operational voltage under light load condition. With the aggressive motivation to boost dynamic power efficiency, the design specification of voltage transition (dv/dt) for the DVS is pushing the physical limitation of the multiphase converter design and the component stress as well. In this paper, the operation modes and modes transition during dynamic voltage transition are illustrated. Critical dead-times of driver IC design and system dynamics are first studied and then optimized. The excessive stress on the control MOSFET which increases the reliability concern is captured in boost mode operation. Feasible solutions are also proposed and verified by both simulation and experiment results. CdV/dt compensation for removing the AVP effect and novel nonlinear control scheme for smooth transition are proposed for dealing with fast voltage positioning. Optimum phase number control during dynamic voltage transition is also proposed and triggered by voltage identification (VID) delta to further reduce the dynamic loss. The proposed schemes are experimentally verified in a 200 W six phase synchronous buck converter. Finally, the work is concluded. The references are listed

    Multi-Client Embedded Telemetry System (MCETS)

    Get PDF
    The Multi-Client Embedded Telemetry System (MCETS) is an ultra-low-power prototype data acquisition system developed in collaboration with MIT Lincoln Laboratory for testing components of the Ballistic Missile Defense System. Capable of collecting both atmospheric and kinematic data, the MCETS incorporates a network of small modular clients that stream data to a server in real-time. This project is concerned with all aspects of the system, including defining the system\u27s functionality, designing the client hardware, developing firmware, and writing server-control software

    Low-Power Reconfigurable Sensing Circuitry for the Internet-of-Things Paradigm

    Get PDF
    With ubiquitous wireless communication via Wi-Fi and nascent 5th Generation mobile communications, more devices -- both smart and traditionally dumb -- will be interconnected than ever before. This burgeoning trend is referred to as the Internet-of-Things. These new sensing opportunities place a larger burden on the underlying circuitry that must operate on finite battery power and/or within energy-constrained environments. New developments of low-power reconfigurable analog sensing platforms like field-programmable analog arrays (FPAAs) present an attractive sensing solution by processing data in the analog domain while staying flexible in design. This work addresses some of the contemporary challenges of low-power wireless sensing via traditional application-specific sensing and with FPAAs. A large emphasis is placed on furthering the development of FPAAs by making them more accessible to designers without a strong integrated-circuit background -- much like FPGAs have done for digital designers
    • …
    corecore