48,009 research outputs found

    Event-Triggered Algorithms for Leader-Follower Consensus of Networked Euler-Lagrange Agents

    Full text link
    This paper proposes three different distributed event-triggered control algorithms to achieve leader-follower consensus for a network of Euler-Lagrange agents. We firstly propose two model-independent algorithms for a subclass of Euler-Lagrange agents without the vector of gravitational potential forces. By model-independent, we mean that each agent can execute its algorithm with no knowledge of the agent self-dynamics. A variable-gain algorithm is employed when the sensing graph is undirected; algorithm parameters are selected in a fully distributed manner with much greater flexibility compared to all previous work concerning event-triggered consensus problems. When the sensing graph is directed, a constant-gain algorithm is employed. The control gains must be centrally designed to exceed several lower bounding inequalities which require limited knowledge of bounds on the matrices describing the agent dynamics, bounds on network topology information and bounds on the initial conditions. When the Euler-Lagrange agents have dynamics which include the vector of gravitational potential forces, an adaptive algorithm is proposed which requires more information about the agent dynamics but can estimate uncertain agent parameters. For each algorithm, a trigger function is proposed to govern the event update times. At each event, the controller is updated, which ensures that the control input is piecewise constant and saves energy resources. We analyse each controllers and trigger function and exclude Zeno behaviour. Extensive simulations show 1) the advantages of our proposed trigger function as compared to those in existing literature, and 2) the effectiveness of our proposed controllers.Comment: Extended manuscript of journal submission, containing omitted proofs and simulation

    QDQD-Learning: A Collaborative Distributed Strategy for Multi-Agent Reinforcement Learning Through Consensus + Innovations

    Full text link
    The paper considers a class of multi-agent Markov decision processes (MDPs), in which the network agents respond differently (as manifested by the instantaneous one-stage random costs) to a global controlled state and the control actions of a remote controller. The paper investigates a distributed reinforcement learning setup with no prior information on the global state transition and local agent cost statistics. Specifically, with the agents' objective consisting of minimizing a network-averaged infinite horizon discounted cost, the paper proposes a distributed version of QQ-learning, QD\mathcal{QD}-learning, in which the network agents collaborate by means of local processing and mutual information exchange over a sparse (possibly stochastic) communication network to achieve the network goal. Under the assumption that each agent is only aware of its local online cost data and the inter-agent communication network is \emph{weakly} connected, the proposed distributed scheme is almost surely (a.s.) shown to yield asymptotically the desired value function and the optimal stationary control policy at each network agent. The analytical techniques developed in the paper to address the mixed time-scale stochastic dynamics of the \emph{consensus + innovations} form, which arise as a result of the proposed interactive distributed scheme, are of independent interest.Comment: Submitted to the IEEE Transactions on Signal Processing, 33 page
    • …
    corecore