54 research outputs found

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too inefficient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/efficiency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings.Comment: 25 page

    Strongly Unforgeable Certificateless Signature Resisting Attacks from Malicious-But-Passive KGC

    Get PDF
    In digital signature, strong unforgeability requires that an attacker cannot forge a new signature on any previously signed/new messages, which is attractive in both theory and practice. Recently, a strongly unforgeable certificateless signature (CLS) scheme without random oracles was presented. In this paper, we firstly show that the scheme fails to achieve strong unforgeability by forging a new signature on a previously signed message under its adversarial model. Then, we point out that the scheme is also vulnerable to the malicious-but-passive key generation center (MKGC) attacks. Finally, we propose an improved strongly unforgeable CLS scheme in the standard model. The improved scheme not only meets the requirement of strong unforgeability but also withstands the MKGC attacks. To the best of our knowledge, we are the first to prove a CLS scheme to be strongly unforgeable against the MKGC attacks without using random oracles

    Cryptographic Schemes based on Elliptic Curve Pairings

    Get PDF
    This thesis introduces the concept of certificateless public key cryptography (CLPKC). Elliptic curve pairings are then used to make concrete CL-PKC schemes and are also used to make other efficient key agreement protocols. CL-PKC can be viewed as a model for the use of public key cryptography that is intermediate between traditional certificated PKC and ID-PKC. This is because, in contrast to traditional public key cryptographic systems, CL-PKC does not require the use of certificates to guarantee the authenticity of public keys. It does rely on the use of a trusted authority (TA) who is in possession of a master key. In this respect, CL-PKC is similar to identity-based public key cryptography (ID-PKC). On the other hand, CL-PKC does not suffer from the key escrow property that is inherent in ID-PKC. Applications for the new infrastructure are discussed. We exemplify how CL-PKC schemes can be constructed by constructing several certificateless public key encryption schemes and modifying other existing ID based schemes. The lack of certificates and the desire to prove the schemes secure in the presence of an adversary who has access to the master key or has the ability to replace public keys, requires the careful development of new security models. We prove that some of our schemes are secure, provided that the Bilinear Diffie-Hellman Problem is hard. We then examine Joux’s protocol, which is a one round, tripartite key agreement protocol that is more bandwidth-efficient than any previous three-party key agreement protocol, however, Joux’s protocol is insecure, suffering from a simple man-in-the-middle attack. We show how to make Joux’s protocol secure, presenting several tripartite, authenticated key agreement protocols that still require only one round of communication. The security properties of the new protocols are studied. Applications for the protocols are also discussed

    Some Implementation Issues for Security Services based on IBE

    Get PDF
    Identity Based Encryption (IBE) is a public key cryptosystem where a unique identity string, such as an e-mail address, can be used as a public key. IBE is simpler than the traditional PKI since certificates are not needed. An IBE scheme is usually based on pairing of discrete points on elliptic curves. An IBE scheme can also be based on quadratic residuosity. This paper presents an overview of these IBE schemes and surveys present IBE based security services. Private key management is described in detail with protocols to authenticate users of Private Key Generation Authorities (PKG), to protect submission of generated private keys, and to avoid the key escrow problem. In the security service survey IBE implementations for smartcards, for smart phones, for security services in mobile networking, for security services in health care information systems, for secure web services, and for grid network security are presented. Also the performance of IBE schemes is estimated

    多人数署名の証明可能安全性に関する研究

    Get PDF
    筑波大学 (University of Tsukuba)201

    Secure pairing-free two-party certificateless authenticated key agreement protocol with minimal computational complexity

    Get PDF
    Key agreement protocols play a vital role in maintaining security in many critical applications due to the importance of the secret key. Bilinear pairing was commonly used in designing secure protocols for the last several years; however, high computational complexity of this operation has been the main obstacle towards its practicality. Therefore, implementation of Elliptic-curve based operations, instead of bilinear pairings, has become popular recently, and pairing-free key agreement protocols have been explored in many studies. A considerable amount of literatures has been published on pairing-free key agreement protocols in the context of Public Key Cryptography (PKC). Simpler key management and non-existence of key escrow problem make certificateless PKC more appealing in practice. However, achieving certificateless pairing-free two-party authenticated key agreement protocols (CL-AKA) that provide high level of security with low computational complexity, remains a challenge in the research area. This research presents a secure and lightweight pairingfree CL-AKA protocol named CL2AKA (CertificateLess 2-party Authenticated Key Agreement). The properties of CL2AKA protocol is that, it is computationally lightweight while communication overhead remains the same as existing protocols of related works. The results indicate that CL2AKA protocol is 21% computationally less complex than the most efficient pairing-free CL-AKA protocol (KKC-13) and 53% less in comparison with the pairing-free CL-AKA protocol with highest level of security guarantee (SWZ-13). Security of CL2AKA protocol is evaluated based on provable security evaluation method under the strong eCK model. It is also proven that the CL2AKA supports all of the security requirements which are necessary for authenticated key agreement protocols. Besides the CL2AKA as the main finding of this research work, there are six pairing-free CL-AKA protocols presented as CL2AKA basic version protocols, which were the outcomes of several attempts in designing the CL2AKA

    Research on security and privacy in vehicular ad hoc networks

    Get PDF
    Los sistemas de redes ad hoc vehiculares (VANET) tienen como objetivo proporcionar una plataforma para diversas aplicaciones que pueden mejorar la seguridad vial, la eficiencia del tráfico, la asistencia a la conducción, la regulación del transporte, etc. o que pueden proveer de una mejor información y entretenimiento a los usuarios de los vehículos. Actualmente se está llevando a cabo un gran esfuerzo industrial y de investigación para desarrollar un mercado que se estima alcance en un futuro varios miles de millones de euros. Mientras que los enormes beneficios que se esperan de las comunicaciones vehiculares y el gran número de vehículos son los puntos fuertes de las VANET, su principal debilidad es la vulnerabilidad a los ataques contra la seguridad y la privacidad.En esta tesis proponemos cuatro protocolos para conseguir comunicaciones seguras entre vehículos. En nuestra primera propuesta empleamos a todas las unidades en carretera (RSU) para mantener y gestionar un grupo en tiempo real dentro de su rango de comunicación. Los vehículos que entren al grupo de forma anónima pueden emitir mensajes vehículo a vehículo (V2V) que inmediatamente pueden ser verificados por los vehículos del mismo grupo (y grupos de vecinos). Sin embargo, en la primera fase del despliegue de este sistema las RSU pueden no estar bien distribuídas. Consecuentemente, se propone un conjunto de mecanismos para hacer frente a la seguridad, privacidad y los requisitos de gestión de una VANET a gran escala sin la suposición de que las RSU estén densamente distribuidas. La tercera propuesta se centra principalmente en la compresión de las evidencias criptográficas que nos permitirán demostrar, por ejemplo, quien era el culpable en caso de accidente. Por último, investigamos los requisitos de seguridad de los sistemas basados en localización (LBS) sobre VANETs y proponemos un nuevo esquema para la preservación de la privacidad de la localización en estos sistemas sobre dichas redes.Vehicular ad hoc network (VANET) systems aim at providing a platform for various applications that can improve traffic safety and efficiency, driver assistance, transportation regulation, infotainment, etc. There is substantial research and industrial effort to develop this market. It is estimated that the market for vehicular communications will reach several billion euros. While the tremendous benefits expected from vehicular communications and the huge number of vehicles are strong points of VANETs, their weakness is vulnerability to attacks against security and privacy.In this thesis, we propose four protocols for secure vehicle communications. In our first proposal, we employ each road-side unit (RSU) to maintain and manage an on-the-fly group within its communication range. Vehicles entering the group can anonymously broadcast vehicle-to-vehicle (V2V) messages, which can be instantly verified by the vehicles in the same group (and neighbor groups). However, at the early stage of VANET deployment, the RSUs may not be well distributed. We then propose a set of mechanisms to address the security, privacy, and management requirements of a large-scale VANET without the assumption of densely distributed RSUs. The third proposal is mainly focused on compressing cryptographic witnesses in VANETs. Finally, we investigate the security requirements of LBS in VANETs and propose a new privacy-preserving LBS scheme for those networks

    Biometric identity-based cryptography for e-Government environment

    Get PDF
    Government information is a vital asset that must be kept in a trusted environment and efficiently managed by authorised parties. Even though e-Government provides a number of advantages, it also introduces a range of new security risks. Sharing confidential and top-secret information in a secure manner among government sectors tend to be the main element that government agencies look for. Thus, developing an effective methodology is essential and it is a key factor for e-Government success. The proposed e-Government scheme in this paper is a combination of identity-based encryption and biometric technology. This new scheme can effectively improve the security in authentication systems, which provides a reliable identity with a high degree of assurance. In addition, this paper demonstrates the feasibility of using Finite-state machines as a formal method to analyse the proposed protocols
    corecore