98 research outputs found

    Pediatric Bone Age Assessment Using Deep Convolutional Neural Networks

    Full text link
    Skeletal bone age assessment is a common clinical practice to diagnose endocrine and metabolic disorders in child development. In this paper, we describe a fully automated deep learning approach to the problem of bone age assessment using data from Pediatric Bone Age Challenge organized by RSNA 2017. The dataset for this competition is consisted of 12.6k radiological images of left hand labeled by the bone age and sex of patients. Our approach utilizes several deep learning architectures: U-Net, ResNet-50, and custom VGG-style neural networks trained end-to-end. We use images of whole hands as well as specific parts of a hand for both training and inference. This approach allows us to measure importance of specific hand bones for the automated bone age analysis. We further evaluate performance of the method in the context of skeletal development stages. Our approach outperforms other common methods for bone age assessment.Comment: 14 pages, 9 figure

    On the segmentation and classification of hand radiographs

    Get PDF
    This research is part of a wider project to build predictive models of bone age using hand radiograph images. We examine ways of finding the outline of a hand from an X-ray as the first stage in segmenting the image into constituent bones. We assess a variety of algorithms including contouring, which has not previously been used in this context. We introduce a novel ensemble algorithm for combining outlines using two voting schemes, a likelihood ratio test and dynamic time warping (DTW). Our goal is to minimize the human intervention required, hence we investigate alternative ways of training a classifier to determine whether an outline is in fact correct or not. We evaluate outlining and classification on a set of 1370 images. We conclude that ensembling with DTW improves performance of all outlining algorithms, that the contouring algorithm used with the DTW ensemble performs the best of those assessed, and that the most effective classifier of hand outlines assessed is a random forest applied to outlines transformed into principal components

    Semi-Supervised Self-Taught Deep Learning for Finger Bones Segmentation

    Full text link
    Segmentation stands at the forefront of many high-level vision tasks. In this study, we focus on segmenting finger bones within a newly introduced semi-supervised self-taught deep learning framework which consists of a student network and a stand-alone teacher module. The whole system is boosted in a life-long learning manner wherein each step the teacher module provides a refinement for the student network to learn with newly unlabeled data. Experimental results demonstrate the superiority of the proposed method over conventional supervised deep learning methods.Comment: IEEE BHI 2019 accepte

    Predictive Modelling of Bone Ageing

    Get PDF
    Bone age assessment (BAA) is a task performed daily by paediatricians in hospitalsworldwide. The main reasons for BAA to be performed are: fi�rstly, diagnosis of growth disorders through monitoring skeletal development; secondly, prediction of final adult height; and fi�nally, verifi�cation of age claims. Manually predicting bone age from radiographs is a di�fficult and time consuming task. This thesis investigates bone age assessment and why automating the process will help. A review of previous automated bone age assessment systems is undertaken and we investigate why none of these systems have gained widespread acceptance. We propose a new automated method for bone age assessment, ASMA (Automated Skeletal Maturity Assessment). The basic premise of the approach is to automatically extract descriptive shape features that capture the human expertise in forming bone age estimates. The algorithm consists of the following six modularised stages: hand segmentation; hand segmentation classifi�cation; bone segmentation; feature extraction; bone segmentation classifi�cation; bone age prediction. We demonstrate that ASMA performs at least as well as other automated systems and that models constructed on just three bones are as accurate at predicting age as expert human assessors using the standard technique. We also investigate the importance of ethnicity and gender in skeletal development. Our conclusion is that the feature based system of separating the image processing from the age modelling is the best approach, since it off�ers flexibility and transparency, and produces accurate estimates

    Automated Analysis of Metacarpal Cortical Thickness in Serial Hand Radiographs

    Get PDF
    To understand the roles of various genes that influence skeletal bone accumulation and loss, accurate measurement of bone mineralization is needed. However, it is a challenging task to accurately assess bone growth over a person\u27s lifetime. Traditionally, manual analysis of hand radiographs has been used to quantify bone growth, but these measurements are tedious and may be impractical for a large-scale growth study. The aim of this project was to develop a tool to automate the measurement of metacarpal cortical bone thickness in standard hand-wrist radiographs of humans aged 3 months to 70+ years that would be more accurate, precise and efficient than manual radiograph analysis. The task was divided into two parts: development of automatic analysis software and the implementation of the routines in a Graphical User Interface (GUI). The automatic analysis was to ideally execute without user intervention, but we anticipated that not all images would be successfully analyzed. The GUI, therefore, provides the interface for the user to execute the program, review results of the automated routines, make semi-automated and manual corrections, view the quantitative results and growth trend of the participant and save the results of all analyses. The project objectives were attained. Of a test set of about 350 images from participants in a large research study, automatic analysis was successful in approximately 75% of the reasonable quality images and manual intervention allowed the remaining 25% of these images to be successfully analyzed. For images of poorer quality, including many that the Lifespan Health Research Center (LHRC) clients would not expect to be analyzed successfully, the inputs provided by the user allowed approximately 80% to be analyzed, but the remaining 20% could not be analyzed with the software. The developed software tool provides results that are more accurate and precise than those from manual analyses. Measurement accuracy, as assessed by phantom measurements, was approximately 0.5% and interobserver and intraobserver agreement were 92.1% and 96.7%, respectively. Interobserver and intraobserver correlation values for automated analysis were 0.9674 and 0.9929, respectively, versus 0.7000 and 0.7820 for manual analysis. The automated analysis process is also approximately 87.5% more efficient than manual image analysis and automatically generates an output file containing over 160 variables of interest. The software is currently being used successfully to analyze over 17,000 images in a study of human bone growth

    Automated Bone Age Assessment: Motivation, Taxonomies, and Challenges

    Get PDF
    Bone age assessment (BAA) of unknown people is one of the most important topics in clinical procedure for evaluation of biological maturity of children. BAA is performed usually by comparing an X-ray of left hand wrist with an atlas of known sample bones. Recently, BAA has gained remarkable ground from academia and medicine. Manual methods of BAA are time-consuming and prone to observer variability. This is a motivation for developing automated methods of BAA. However, there is considerable research on the automated assessment, much of which are still in the experimental stage. This survey provides taxonomy of automated BAA approaches and discusses the challenges. Finally, we present suggestions for future research

    Angular and linear measurements of adult flexible flatfoot via weight-bearing CT scans and 3D bone reconstruction tools

    Get PDF
    open10noThis study was partially funded by the Italian Ministry of Economy and Finance, program “5 per mille”.Acquired adult flatfoot is a frequent deformity which implies multiple, complex and combined 3D modifications of the foot skeletal structure. The difficult thorough evaluation of the degree of severity pre-op and the corresponding assessment post-op can now be overcome by cone-beam (CBCT) technology, which can provide access to the 3D skeletal structure in weight-bearing. This study aims to report flatfoot deformities originally in 3D and in weight-bearing, with measurements taken using two different bone segmentation techniques. 21 such patients, with indication for surgical corrections, underwent CBCT (Carestream, US) while standing on one leg. From these scans, 3D models of each bone of the foot were reconstructed by using two different state-of-the-art segmentation tools: a semi-automatic (Mimics Innovation Suite, Materialise, Belgium), and an automatic (Bonelogic Ortho Foot and Ankle, Disior, Finland). From both reconstructed models, Principal Component Analysis was used to define anatomical reference frames, and original foot and ankle angles and other parameters were calculated mostly based on the longitudinal axis of the bones, in anatomical plane projections and in 3D. Both bone model reconstructions revealed a considerable valgus of the calcareous, plantarflexion and internal rotation of the talus, and typical Meary’s angles in the lateral and transverse plane projections. The mean difference from these angles between semi-automatic and automatic segmentations was larger than 3.5 degrees for only 3 of the 32 measurements, and a large number of these differences were not statistically significant. CBCT and the present techniques for bone shape reconstruction finally provide a novel and valuable 3D assessment of complex foot deformities in weight-bearing, eliminating previous limitations associated to unloaded feet and bidimensional measures. Corresponding measurements on the bone models from the two segmentation tools compared well. Other more representative measurements can be defined in the future using CBCT and these techniques.openOrtolani M.; Leardini A.; Pavani C.; Scicolone S.; Girolami M.; Bevoni R.; Lullini G.; Durante S.; Berti L.; Belvedere C.Ortolani M.; Leardini A.; Pavani C.; Scicolone S.; Girolami M.; Bevoni R.; Lullini G.; Durante S.; Berti L.; Belvedere C

    Multipurpose contrast enhancement on epiphyseal plates and ossification centers for bone age assessment

    Get PDF
    BACKGROUND: The high variations of background luminance, low contrast and excessively enhanced contrast of hand bone radiograph often impede the bone age assessment rating system in evaluating the degree of epiphyseal plates and ossification centers development. The Global Histogram equalization (GHE) has been the most frequently adopted image contrast enhancement technique but the performance is not satisfying. A brightness and detail preserving histogram equalization method with good contrast enhancement effect has been a goal of much recent research in histogram equalization. Nevertheless, producing a well-balanced histogram equalized radiograph in terms of its brightness preservation, detail preservation and contrast enhancement is deemed to be a daunting task. METHOD: In this paper, we propose a novel framework of histogram equalization with the aim of taking several desirable properties into account, namely the Multipurpose Beta Optimized Bi-Histogram Equalization (MBOBHE). This method performs the histogram optimization separately in both sub-histograms after the segmentation of histogram using an optimized separating point determined based on the regularization function constituted by three components. The result is then assessed by the qualitative and quantitative analysis to evaluate the essential aspects of histogram equalized image using a total of 160 hand radiographs that are implemented in testing and analyses which are acquired from hand bone online database. RESULT: From the qualitative analysis, we found that basic bi-histogram equalizations are not capable of displaying the small features in image due to incorrect selection of separating point by focusing on only certain metric without considering the contrast enhancement and detail preservation. From the quantitative analysis, we found that MBOBHE correlates well with human visual perception, and this improvement shortens the evaluation time taken by inspector in assessing the bone age. CONCLUSIONS: The proposed MBOBHE outperforms other existing methods regarding comprehensive performance of histogram equalization. All the features which are pertinent to bone age assessment are more protruding relative to other methods; this has shorten the required evaluation time in manual bone age assessment using TW method. While the accuracy remains unaffected or slightly better than using unprocessed original image. The holistic properties in terms of brightness preservation, detail preservation and contrast enhancement are simultaneous taken into consideration and thus the visual effect is contributive to manual inspection
    • …
    corecore