211 research outputs found

    Clinical validation of an algorithm for rapid and accurate automated segmentation of intracoronary optical coherence tomography images

    Get PDF
    Objectives: The analysis of intracoronary optical coherence tomography (OCT) images is based on manual identification of the lumen contours and relevant structures. However, manual image segmentation is a cumbersome and time-consuming process, subject to significant intra- and inter-observer variability. This study aims to present and validate a fully-automated method for segmentation of intracoronary OCT images. Methods: We studied 20 coronary arteries (mean length = 39.7 ± 10.0 mm) from 20 patients who underwent a clinically-indicated cardiac catheterization. The OCT images (n = 1812) were segmented manually, as well as with a fully-automated approach. A semi-automated variation of the fully-automated algorithm was also applied. Using certain lumen size and lumen shape characteristics, the fully- and semi-automated segmentation algorithms were validated over manual segmentation, which was considered as the gold standard. Results: Linear regression and Bland–Altman analysis demonstrated that both the fully-automated and semiautomated segmentation had a very high agreement with the manual segmentation, with the semi-automated approach being slightly more accurate than the fully-automated method. The fully-automated and semiautomated OCT segmentation reduced the analysis time by more than 97% and 86%, respectively, compared to manual segmentation. Conclusions: In the current work we validated a fully-automated OCT segmentation algorithm, as well as a semiautomated variation of it in an extensive “real-life” dataset of OCT images. The study showed that our algorithm can perform rapid and reliable segmentation of OCT images

    Fully Automated Lumen Segmentation Method for Intracoronary Optical Coherence Tomography.

    Get PDF
    BACKGROUND: Optical coherence tomography (OCT) is an innovative imaging technique that generates high-resolution intracoronary images. In the last few years, the need for more precise analysis regarding coronary artery disease to achieve optimal treatment has made intravascular imaging an area of primary importance in interventional cardiology. One of the main challenges in OCT image analysis is the accurate detection of lumen which is significant for the further prognosis. METHOD: In this research, we present a new approach to the segmentation of lumen in OCT images. The proposed work is focused on designing an efficient automatic algorithm containing the following steps: preprocessing (artifacts removal: speckle noise, circular rings, and guide wire), conversion between polar and Cartesian coordinates, and segmentation algorithm. RESULTS: The implemented method was tasted on 667 OCT frames. The lumen border was extracted with a high correlation compared to the ground truth: 0.97 ICC (0.97-0.98). CONCLUSIONS: Proposed algorithm allows for fully automated lumen segmentation on optical coherence tomography images. This tool may be applied to automated quantitative lumen analysis.Peer Reviewe

    Automated Accurate Lumen Segmentation Using L-mode Interpolation for Three-Dimensional Intravascular Optical Coherence Tomography

    Get PDF
    Intravascular optical coherence tomography (IVOCT) lumen-based computational flow dynamics (CFD) enables physiologic evaluations such as of the fractional flow reserve (FFR) and wall sheer stress. In this study, we developed an accurate, time-efficient method for extracting lumen contours of the coronary artery. The contours of cross-sectional images containing wide intimal discontinuities due to guide wire shadowing and large bifurcations were delineated by utilizing the natural longitudinal lumen continuity of the arteries. Our algorithm was applied to 5931 pre-intervention OCT images acquired from 40 patients. For a quantitative comparison, the images were also processed through manual segmentation (the reference standard) and automated ones utilizing cross-sectional and longitudinal continuities. The results showed that the proposed algorithm outperforms other schemes, exhibiting a strong correlation (R = 0.988) and overlapping and non-overlapping area ratios of 0.931 and 0.101, respectively. To examine the accuracy of the OCT-derived FFR calculated using the proposed scheme, a CFD simulation of a three-dimensional coronary geometry was performed. The strong correlation with a manual lumen-derived FFR (R = 0.978) further demonstrated the reliability and accuracy of our algorithm with potential applications in clinical settings.ope

    Polymeric endovascular strut and lumen detection algorithm for intracoronary optical coherence tomography images

    Get PDF
    Polymeric endovascular implants are the next step in minimally invasive vascular interventions. As an alternative to traditional metallic drug-eluting stents, these often-erodible scaffolds present opportunities and challenges for patients and clinicians. Theoretically, as they resorb and are absorbed over time, they obviate the long-term complications of permanent implants, but in the short-term visualization and therefore positioning is problematic. Polymeric scaffolds can only be fully imaged using optical coherence tomography (OCT) imaging—they are relatively invisible via angiography—and segmentation of polymeric struts in OCT images is performed manually, a laborious and intractable procedure for large datasets. Traditional lumen detection methods using implant struts as boundary limits fail in images with polymeric implants. Therefore, it is necessary to develop an automated method to detect polymeric struts and luminal borders in OCT images; we present such a fully automated algorithm. Accuracy was validated using expert annotations on 1140 OCT images with a positive predictive value of 0.93 for strut detection and an R^2 correlation coefficient of 0.94 between detected and expert-annotated lumen areas. The proposed algorithm allows for rapid, accurate, and automated detection of polymeric struts and the luminal border in OCT images

    Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging

    Get PDF
    Intravascular optical coherence tomography (IVOCT) is a well-established method for the high-resolution investigation of atherosclerosis in vivo. Intravascular near-infrared fluorescence (NIRF) imaging is a novel technique for the assessment of molecular processes associated with coronary artery disease. Integration of NIRF and IVOCT technology in a single catheter provides the capability to simultaneously obtain co-localized anatomical and molecular information from the artery wall. Since NIRF signal intensity attenuates as a function of imaging catheter distance to the vessel wall, the generation of quantitative NIRF data requires an accurate measurement of the vessel wall in IVOCT images. Given that dual modality, intravascular OCT–NIRF systems acquire data at a very high frame-rate (>100 frames/s), a high number of images per pullback need to be analyzed, making manual processing of OCT–NIRF data extremely time consuming. To overcome this limitation, we developed an algorithm for the automatic distance-correction of dual-modality OCT–NIRF images. We validated this method by comparing automatic to manual segmentation results in 180 in vivo images from six New Zealand White rabbit atherosclerotic after indocyanine-green injection. A high Dice similarity coefficient was found (0.97 ± 0.03) together with an average individual A-line error of 22 µm (i.e., approximately twice the axial resolution of IVOCT) and a processing time of 44 ms per image. In a similar manner, the algorithm was validated using 120 IVOCT clinical images from eight different in vivo pullbacks in human coronary arteries. The results suggest that the proposed algorithm enables fully automatic visualization of dual modality OCT–NIRF pullbacks, and provides an accurate and efficient calibration of NIRF data for quantification of the molecular agent in the atherosclerotic vessel wall.National Institutes of Health (U.S.) (NIH R01HL093717)Merck & Co., Inc

    A framework for computational fluid dynamic analyses of patient-specific stented coronary arteries from optical coherence tomography images

    Get PDF
    The clinical challenge of percutaneous coronary interventions (PCI) is highly dependent on the recognition of the coronary anatomy of each individual. The classic imaging modality used for PCI is angiography, but advanced imaging techniques that are routinely performed during PCI, like optical coherence tomography (OCT), may provide detailed knowledge of the pre-intervention vessel anatomy as well as the post-procedural assessment of the specific stent-to-vessel interactions. Computational fluid dynamics (CFD) is an emerging investigational tool in the setting of optimization of PCI results. In this study, an OCT-based reconstruction method was developed for the execution of CFD simulations of patient-specific coronary artery models which include the actual geometry of the implanted stent. The method was applied to a rigid phantom resembling a stented segment of the left anterior descending coronary artery. The segmentation algorithm was validated against manual segmentation. A strong correlation was found between automatic and manual segmentation of lumen in terms of area values. Similarity indices resulted >96% for the lumen segmentation and >77% for the stent strut segmentation. The 3D reconstruction achieved for the stented phantom was also assessed with the geometry provided by X-ray computed micro tomography scan, used as ground truth, and showed the incidence of distortion from catheter-based imaging techniques. The 3D reconstruction was successfully used to perform CFD analyses, demonstrating a great potential for patient-specific investigations. In conclusion, OCT may represent a reliable source for patient-specific CFD analyses which may be optimized using dedicated automatic segmentation algorithms

    Quantification of fibrous cap thickness in intracoronary optical coherence tomography with a contour segmentation method based on dynamic programming

    Get PDF
    OBJECTIVES: Fibrous cap thickness is the most critical component of plaque stability. Therefore, in vivo quantification of cap thickness could yield valuable information for estimating the risk of plaque rupture. In the context of preoperative planning and perioperative decision making, intracoronary optical coherence tomography imaging can provide a very detailed characterization of the arterial wall structure. However, visual interpretation of the images is laborious, subject to variability, and therefore not always sufficiently reliable for immediate decision of treatment. METHODS: A novel semiautomatic segmentation method to quantify coronary fibrous cap thickness in optical coherence tomography is introduced. To cope with the most challenging issue when estimating cap thickness (namely the diffuse appearance of the anatomical abluminal interface to be detected), the proposed method is based on a robust dynamic programming framework using a geometrical a priori. To determine the optimal parameter settings, a training phase was conducted on 10 patients. RESULTS: Validated on a dataset of 179 images from 21 patients, the present framework could successfully extract the fibrous cap contours. When assessing minimal cap thickness, segmentation results from the proposed method were in good agreement with the reference tracings performed by a medical expert (mean absolute error and standard deviation of [Formula: see text] ) and were similar to inter-observer reproducibility ([Formula: see text] , R = .74), while being significantly faster and fully reproducible. CONCLUSION: The proposed framework demonstrated promising performances and could potentially be used for online identification of high-risk plaques

    Intravascular Optical Coherence Tomography Image Segmentation Based on Support Vector Machine Algorithm

    Get PDF
    Intravascular optical coherence tomography (IVOCT) is becoming more and more popular in clinical diagnosis of coronary atherosclerotic. However, reading IVOCT images is of large amount of work. This article describes a method based on image feature extraction and support vector machine (SVM) to achieve semi-automatic segmentation of IVOCT images. The image features utilized in this work including light attenuation coefficients and image textures based on gray level co-occurrence matrix. Different sets of hyper-parameters and image features were tested. This method achieved an accuracy of 83% on the test images. Single class accuracy of 89% for fibrous, 79.3% for calcification and 86.5% lipid tissue. The results show that this method can be a considerable way for semi-automatic segmentation of atherosclerotic plaque components in clinical IVOCT images
    corecore