635 research outputs found

    Anonymous and Adaptively Secure Revocable IBE with Constant Size Public Parameters

    Full text link
    In Identity-Based Encryption (IBE) systems, key revocation is non-trivial. This is because a user's identity is itself a public key. Moreover, the private key corresponding to the identity needs to be obtained from a trusted key authority through an authenticated and secrecy protected channel. So far, there exist only a very small number of revocable IBE (RIBE) schemes that support non-interactive key revocation, in the sense that the user is not required to interact with the key authority or some kind of trusted hardware to renew her private key without changing her public key (or identity). These schemes are either proven to be only selectively secure or have public parameters which grow linearly in a given security parameter. In this paper, we present two constructions of non-interactive RIBE that satisfy all the following three attractive properties: (i) proven to be adaptively secure under the Symmetric External Diffie-Hellman (SXDH) and the Decisional Linear (DLIN) assumptions; (ii) have constant-size public parameters; and (iii) preserve the anonymity of ciphertexts---a property that has not yet been achieved in all the current schemes

    Forward-secure hierarchical predicate encryption

    Get PDF
    Secrecy of decryption keys is an important pre-requisite for security of any encryption scheme and compromised private keys must be immediately replaced. \emph{Forward Security (FS)}, introduced to Public Key Encryption (PKE) by Canetti, Halevi, and Katz (Eurocrypt 2003), reduces damage from compromised keys by guaranteeing confidentiality of messages that were encrypted prior to the compromise event. The FS property was also shown to be achievable in (Hierarchical) Identity-Based Encryption (HIBE) by Yao, Fazio, Dodis, and Lysyanskaya (ACM CCS 2004). Yet, for emerging encryption techniques, offering flexible access control to encrypted data, by means of functional relationships between ciphertexts and decryption keys, FS protection was not known to exist.\smallskip In this paper we introduce FS to the powerful setting of \emph{Hierarchical Predicate Encryption (HPE)}, proposed by Okamoto and Takashima (Asiacrypt 2009). Anticipated applications of FS-HPE schemes can be found in searchable encryption and in fully private communication. Considering the dependencies amongst the concepts, our FS-HPE scheme implies forward-secure flavors of Predicate Encryption and (Hierarchical) Attribute-Based Encryption.\smallskip Our FS-HPE scheme guarantees forward security for plaintexts and for attributes that are hidden in HPE ciphertexts. It further allows delegation of decrypting abilities at any point in time, independent of FS time evolution. It realizes zero-inner-product predicates and is proven adaptively secure under standard assumptions. As the ``cross-product" approach taken in FS-HIBE is not directly applicable to the HPE setting, our construction resorts to techniques that are specific to existing HPE schemes and extends them with what can be seen as a reminiscent of binary tree encryption from FS-PKE

    Ciphertext-Policy Attribute Based Encryption with Selectively-Hidden Access Policy

    Get PDF
    In conventional Ciphertext-Policy Attribute-Based Encryption (CP-ABE), the access policy appears in plaintext form that might reveal confidential user information and violate user privacy. CP-ABE with hidden access policies hides all attributes, but the computational burden increases due to the attribute hiding. In this paper, we present a Linear Secret Sharing Scheme (LSSS) access structure CP-ABE scheme that hides only sensitive attributes, rather than all attributes, in the access policy. We also provide an attribute selection method to choose these sensitive attributes and use an Attribute Bloom Filter (ABF) to hide them. Compared with the existing major CP-ABE schemes with hidden access policies, our proposed scheme is flexible in selecting attributes to hide. This scheme enhances the efficiency of policy hiding while still protecting policy privacy. Test results show that our approach is reasonable and feasible

    Equivalence-based Security for Querying Encrypted Databases: Theory and Application to Privacy Policy Audits

    Full text link
    Motivated by the problem of simultaneously preserving confidentiality and usability of data outsourced to third-party clouds, we present two different database encryption schemes that largely hide data but reveal enough information to support a wide-range of relational queries. We provide a security definition for database encryption that captures confidentiality based on a notion of equivalence of databases from the adversary's perspective. As a specific application, we adapt an existing algorithm for finding violations of privacy policies to run on logs encrypted under our schemes and observe low to moderate overheads.Comment: CCS 2015 paper technical report, in progres

    Functional Encryption as Mediated Obfuscation

    Get PDF
    We introduce a new model for program obfuscation, called mediated obfuscation. A mediated obfuscation is a 3-party protocol for evaluating an obfuscated program that requires minimal interaction and limited trust. The party who originally supplies the obfuscated program need not be online when the client wants to evaluate the program. A semi-trusted third-party mediator allows the client to evaluate the program, while learning nothing about the obfuscated program or the client’s inputs and outputs. Mediated obfuscation would provide the ability for a software vendor to safely outsource the less savory aspects (like accounting of usage statistics, and remaining online to facilitate access) of “renting out” access to proprietary software. We give security definitions for this new obfuscation paradigm, and then present a simple and generic construction based on functional encryption. If a functional encryption scheme supports decryption functionality F (m, k), then our construction yields a mediated obfuscation of the class of functions {F (m, ·) | m}. In our construction, the interaction between the client and the mediator is minimal (much more efficient than a general- purpose multi-party computation protocol). Instantiating with existing FE constructions, we achieve obfuscation for point-functions with output (under a strong “virtual black-box” notion of security), and a general feasibility result for obfuscating conjunctive normal form and disjunctive normal form formulae (under a weaker “semantic” notion of security). Finally, we use mediated obfuscation to illustrate a connection between worst-case and average-case static obfuscation. In short, an average-case (static) obfuscation of some component of a suitable functional encryption scheme yields a worst-case (static) obfuscation for a related class of functions. We use this connection to demonstrate new impossibility results for average-case (static) obfuscation

    Fully Secure (Doubly-)Spatial Encryption under Simpler Assumptions

    Get PDF
    Spatial encryption was first proposed by Boneh and Hamburg in 2008. It is one implementation of the generalized identity-based encryption schemes and many systems with a variety of properties can be derived from it. Recently, Hamburg improved the notion by presenting a variant called doubly-spatial encryption. The doubly spatial encryption is more powerful and expressive. More useful cryptography systems can be builded from it, such as attribute-based encryption, etc. However, most presented spatial encryption schemes are proven to be selectively secure. Only a few spatial encryption schemes achieve adaptive security, but not under standard assumptions. And no fully secure doubly-spatial encryption scheme has been presented before. In this paper, we primarily focus on the adaptive security of (doubly-)spatial encryption. A spatial encryption scheme and a doubly-spatial encryption scheme have been proposed. Then we apply the dual system methodology proposed by Waters in the security proof. Both of the schemes can be proven adaptively secure under standard assumptions, the decisional linear (DLIN) assumption and the decisional bilinear Diffie-Hellman (DBDH) assumption, over prime order groups in the standard model. To the best of our knowledge, our second scheme is the first fully secure construction of doubly-spatial encryption

    Reusable garbled circuits and succinct functional encryption

    Get PDF
    Garbled circuits, introduced by Yao in the mid 80s, allow computing a function f on an input x without leaking anything about f or x besides f(x). Garbled circuits found numerous applications, but every known construction suffers from one limitation: it offers no security if used on multiple inputs x. In this paper, we construct for the first time reusable garbled circuits. The key building block is a new succinct single-key functional encryption scheme. Functional encryption is an ambitious primitive: given an encryption Enc(x) of a value x, and a secret key sk_f for a function f, anyone can compute f(x) without learning any other information about x. We construct, for the first time, a succinct functional encryption scheme for {\em any} polynomial-time function f where succinctness means that the ciphertext size does not grow with the size of the circuit for f, but only with its depth. The security of our construction is based on the intractability of the Learning with Errors (LWE) problem and holds as long as an adversary has access to a single key sk_f (or even an a priori bounded number of keys for different functions). Building on our succinct single-key functional encryption scheme, we show several new applications in addition to reusable garbled circuits, such as a paradigm for general function obfuscation which we call token-based obfuscation, homomorphic encryption for a class of Turing machines where the evaluation runs in input-specific time rather than worst-case time, and a scheme for delegating computation which is publicly verifiable and maintains the privacy of the computation.Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant)United States. Defense Advanced Research Projects Agency (DARPA award FA8750-11-2-0225)United States. Defense Advanced Research Projects Agency (DARPA award N66001-10-2-4089)National Science Foundation (U.S.) (NSF award CNS-1053143)National Science Foundation (U.S.) (NSF award IIS-1065219)Google (Firm

    Improvements and New Constructions of Digital Signatures

    Get PDF
    Ein digitales Signaturverfahren, oft auch nur digitale Signatur genannt, ist ein wichtiger und nicht mehr wegzudenkender Baustein in der Kryptographie. Es stellt das digitale Äquivalent zur klassischen handschriftlichen Signatur dar und liefert darüber hinaus noch weitere wünschenswerte Eigenschaften. Mit solch einem Verfahren kann man einen öffentlichen und einen geheimen Schlüssel erzeugen. Der geheime Schlüssel dient zur Erstellung von Signaturen zu beliebigen Nachrichten. Diese können mit Hilfe des öffentlichen Schlüssels von jedem überprüft und somit verifiziert werden. Desweiteren fordert man, dass das Verfahren "sicher" sein soll. Dazu gibt es in der Literatur viele verschiedene Begriffe und Definitionen, je nachdem welche konkreten Vorstellungen beziehungsweise Anwendungsgebiete man hat. Vereinfacht gesagt, sollte es für einen Angreifer ohne Kenntnis des geheimen Schlüssels nicht möglich sein eine gültige Signatur zu einer beliebigen Nachricht zu fälschen. Ein sicheres Signaturverfahren kann somit verwendet werden um die folgenden Ziele zu realisieren: - Authentizität: Jeder Empfänger kann überprüfen, ob die Nachricht von einem bestimmten Absender kommt. - Integrität der Nachricht: Jeder Empfänger kann feststellen, ob die Nachricht bei der Übertragung verändert wurde. - Nicht-Abstreitbarkeit: Der Absender kann nicht abstreiten die Signatur erstellt zu haben. Damit ist der Einsatz von digitalen Signaturen für viele Anwendungen in der Praxis sehr wichtig. Überall da, wo es wichtig ist die Authentizität und Integrität einer Nachricht sicherzustellen, wie beim elektronischen Zahlungsverkehr, Softwareupdates oder digitalen Zertifikaten im Internet, kommen digitale Signaturen zum Einsatz. Aber auch für die kryptographische Theorie sind digitale Signaturen ein unverzichtbares Hilfsmittel. Sie ermöglichen zum Beispiel die Konstruktion von stark sicheren Verschlüsselungsverfahren. Eigener Beitrag: Wie bereits erwähnt gibt es unterschiedliche Sicherheitsbegriffe im Rahmen von digitalen Signaturen. Ein Standardbegriff von Sicherheit, der eine recht starke Form von Sicherheit beschreibt, wird in dieser Arbeit näher betrachtet. Die Konstruktion von Verfahren, die diese Form der Sicherheit erfüllen, ist ein vielschichtiges Forschungsthema. Dazu existieren unterschiedliche Strategien in unterschiedlichen Modellen. In dieser Arbeit konzentrieren wir uns daher auf folgende Punkte. - Ausgehend von vergleichsweise realistischen Annahmen konstruieren wir ein stark sicheres Signaturverfahren im sogenannten Standardmodell, welches das realistischste Modell für Sicherheitsbeweise darstellt. Unser Verfahren ist das bis dahin effizienteste Verfahren in seiner Kategorie. Es erstellt sehr kurze Signaturen und verwendet kurze Schlüssel, beides unverzichtbar für die Praxis. - Wir verbessern die Qualität eines Sicherheitsbeweises von einem verwandten Baustein, der identitätsbasierten Verschlüsselung. Dies hat unter anderem Auswirkung auf dessen Effizienz bezüglich der empfohlenen Schlüssellängen für den sicheren Einsatz in der Praxis. Da jedes identitätsbasierte Verschlüsselungsverfahren generisch in ein digitales Signaturverfahren umgewandelt werden kann ist dies auch im Kontext digitaler Signaturen interessant. - Wir betrachten Varianten von digitalen Signaturen mit zusätzlichen Eigenschaften, sogenannte aggregierbare Signaturverfahren. Diese ermöglichen es mehrere Signaturen effizient zu einer zusammenzufassen und dabei trotzdem alle zugehörigen verschiedenen Nachrichten zu verifizieren. Wir geben eine neue Konstruktion von solch einem aggregierbaren Signaturverfahren an, bei der das Verfahren eine Liste aller korrekt signierten Nachrichten in einer aggregierten Signatur ausgibt anstatt, wie bisher üblich, nur gültig oder ungültig. Wenn eine aggregierte Signatur aus vielen Einzelsignaturen besteht wird somit das erneute Berechnen und eventuell erneute Senden hinfällig und dadurch der Aufwand erheblich reduziert

    Attribute Based Encryption with Verifiable Time Stamped Decryption

    Get PDF
    Numerous applications require expanded insurance of private information including access control strategies that are cryptographically authorized. A promising utilization of ABE is adaptable get to control of scrambled information put away in the cloud, utilizing access polices and credited traits related with private keys and ciphertexts. Productivity disadvantages of the current ABE plans is that unscrambling includes costly matching operations and the quantity of such operations develops with the intricacy of the get to approach. The public key generation relying upon the properties of the predetermined content to be encrypted, that will create numerous keys to be utilized to scramble or unscramble the information. Extra private key to be included is the server time stamping with the encryption key to guarantee that the data should not be recovered after particular timeframe. The accompanying paper is depicting a strategies showing how to apply those technique safely and effectively to manage secret data circulated over capacity organize. Security and execution examination demonstrates the proposed plans are provably secure and exceptionally effective
    corecore