262 research outputs found

    Fully Secure Anonymous Hierarchical Identity-Based Encryption with Constant Size Ciphertexts

    Get PDF
    Efficient and privacy-preserving constructions for search functionality on encrypted data is important issues for data outsourcing, and data retrieval, etc. Fully secure anonymous Hierarchical ID-Based Encryption (HIBE) schemes is useful primitives that can be applicable to searchable encryptions [4], such as ID-based searchable encryption, temporary searchable encryption [1], and anonymous forward secure HIBE [9]. We propose a fully secure anonymous HIBE scheme with constant size ciphertexts

    Forward-secure hierarchical predicate encryption

    Get PDF
    Secrecy of decryption keys is an important pre-requisite for security of any encryption scheme and compromised private keys must be immediately replaced. \emph{Forward Security (FS)}, introduced to Public Key Encryption (PKE) by Canetti, Halevi, and Katz (Eurocrypt 2003), reduces damage from compromised keys by guaranteeing confidentiality of messages that were encrypted prior to the compromise event. The FS property was also shown to be achievable in (Hierarchical) Identity-Based Encryption (HIBE) by Yao, Fazio, Dodis, and Lysyanskaya (ACM CCS 2004). Yet, for emerging encryption techniques, offering flexible access control to encrypted data, by means of functional relationships between ciphertexts and decryption keys, FS protection was not known to exist.\smallskip In this paper we introduce FS to the powerful setting of \emph{Hierarchical Predicate Encryption (HPE)}, proposed by Okamoto and Takashima (Asiacrypt 2009). Anticipated applications of FS-HPE schemes can be found in searchable encryption and in fully private communication. Considering the dependencies amongst the concepts, our FS-HPE scheme implies forward-secure flavors of Predicate Encryption and (Hierarchical) Attribute-Based Encryption.\smallskip Our FS-HPE scheme guarantees forward security for plaintexts and for attributes that are hidden in HPE ciphertexts. It further allows delegation of decrypting abilities at any point in time, independent of FS time evolution. It realizes zero-inner-product predicates and is proven adaptively secure under standard assumptions. As the ``cross-product" approach taken in FS-HIBE is not directly applicable to the HPE setting, our construction resorts to techniques that are specific to existing HPE schemes and extends them with what can be seen as a reminiscent of binary tree encryption from FS-PKE

    Theory and Applications of Outsider Anonymity in Broadcast Encryption

    Full text link
    Broadcast Encryption (BE) allows efficient one-to-many secret communication of data over a broadcast channel. In the standard setting of BE, information about receivers is transmitted in the clear together with ciphertexts. This could be a serious violation of recipient privacy since the identities of the users authorized to access the secret content in certain broadcast scenarios are as sensitive as the content itself. Anonymous Broadcast Encryption (AnoBe) prevents this leakage of recipient identities from ciphertexts but at a cost of a linear lower bound (in the number of receivers) on the length of ciphertexts. A linear ciphertext length is a highly undesirable bottleneck in any large-scale broadcast application. In this thesis, we propose a less stringent yet very meaningful notion of anonymity for anonymous broadcast encryption called Outsider-Anonymous Broadcast Encryption (oABE) that allows the creation of ciphertexts that are sublinear in the number of receivers. We construct several oABE schemes with varying security guarantees and levels of efficiency. We also present two very interesting cryptographic applications afforded by the efficiency of our oABE schemes. The first is Broadcast Steganography (BS), the extension of the state of the art setting of point-to-point steganography to the multi-recipient setting. The second is Oblivious Group Storage (OGS), the introduction of fine-grained data access control policies to the setting of multi-client oblivious cloud storage protocols
    corecore